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In algebraic topology m,'s were introduced as devices to distinguish
homotopy classes of spaces.

Let X and Y be spaces, if there exists n such that m,(X) # m,(Y),
then the spaces cannot be homotopically equivalent.

It was natural to ask for a converse of this statement. Whitehead
designed the definition of CW complexes to detect a class of spaces for
which the converse holds.

Thm. (Whitehead '49)
The functor

('"'n)nEN

ho(CW,) " 5" GrpN

reflects isomorphisms (is conservative).
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In the sense of the previous slide, one can look at algebraic topology as
a representation of the homotopy category of spaces into some kind of
algebraic category.

ho(Top,.) A

Tipically one asks this functor to be faithful or conservative, depending
if we want to distinguish maps, objects, or both.

Observe that we did not give a precise notion of algebraic category. In
fact, we aim to replace A with the category of sets. We feel free to
make this choice because, whatever algebraic means, the category of
sets will be an algebraic category, and any algebraic category has a
faithful and conservative functor to Set.
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Thus, for us, algebraic topology studies the properties of functors
ho(Top,) 1 Set

hoping for faithfulness and conservativity.

Going back to Whitehead's theorem, the functor

ho(CW,) ™55 Set

is not faithful. Is it possible to replace homotopy groups with another
algebraic device in order to get a faithful functor?

Thm. (Freyd '70)
There is no faithful functor ho(CW,.)—Set.
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Thm. Loregian, DL '17

Let M be a pointed model category; if there exist an index n€ N > 1
and a ‘weak classifying object’ for the functor m, : M — Grp, then
ho(M) is not concrete.

By weak classifying object we mean a very weak notion of
Eilenberg-Mac Lane spaces that we introduced in the paper. There is
no need to specify that Eilemberg-Mac Lane like constructions occur all
the time in model categories.

The following are all examples of weak classifying objects for a model
category:

A section for m,;

A faithful left adjoint for m,;

A full right adjoint for 7.
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In the direction of conservativity

In his paper Freyd explicitly provides the conservative functor

C — Set. Even in the most elementary case, how does this functor
look like? Might it be interesting to actually use it independently
from its abstract application?

It is possible to rephrase Freyd's theorem saying that if C is
enriched over Set, then there is a conservative functor to Set. Is it
possible to state the same theorem for categories enriched over an
elementary topos?
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In the direction of faithfulness

Given two categories A and B we say that A is more complicated than
B (A > B) if there is a faithful functor from B to A.

This sets a partial order on categories. Freyd proved that Set does not
sit on the top of this order. Even more, Set < ho(CW,).

Is this order even total?
Is ho(CW.) the most complicated category?

Does any homotopical category have a faithful functor into
ho(CW.,)?
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