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In algebraic topology πn’s were introduced as devices to distinguish
homotopy classes of spaces.

Let X and Y be spaces, if there exists n such that πn(X ) 6= πn(Y ),
then the spaces cannot be homotopically equivalent.

It was natural to ask for a converse of this statement. Whitehead
designed the definition of CW complexes to detect a class of spaces for
which the converse holds.

Thm. (Whitehead ’49)
The functor

ho(CW∗)
(πn)n∈N−→ GrpN

reflects isomorphisms (is conservative).
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In the sense of the previous slide, one can look at algebraic topology as
a representation of the homotopy category of spaces into some kind of
algebraic category.

ho(Top∗)
Π−→ A

Tipically one asks this functor to be faithful or conservative, depending
if we want to distinguish maps, objects, or both.

Observe that we did not give a precise notion of algebraic category. In
fact, we aim to replace A with the category of sets. We feel free to
make this choice because, whatever algebraic means, the category of
sets will be an algebraic category, and any algebraic category has a
faithful and conservative functor to Set.
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Thus, for us, algebraic topology studies the properties of functors

ho(Top∗)
Π−→ Set

hoping for faithfulness and conservativity.

Going back to Whitehead’s theorem, the functor

ho(CW∗)
(πn)n∈N−→ Set

is not faithful. Is it possible to replace homotopy groups with another
algebraic device in order to get a faithful functor?

Thm. (Freyd ’70)

There is no faithful functor ho(CW∗)→Set.
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1 ho(CW∗) was the first (non artificial) example of non concrete
category. The first known example was due to Isbell.

2 Freyd’s proof technique relies on a very important criterion due to
Isbell.

Thm. (Lazy Isbell criterion)

Let C be a category with finite limits. C is concrete (i.e. has a faithful
functor to Set) if and only if it is regular well-powered.

In the same paper Freyd gives a surprising answer also for the existence
of conservative functors into Set.

Thm. (Freyd ’70)

Any (locally small) category has a conservative functor to Set.
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Thm. (Freyd ’70)

Any (locally small) category has a conservative functor to Set.

We look at the former as Freyd’s generalized version of Whitehead’s
theorem. This is not an over-interpretation of Freyd’s result. The
construction relies on a very sophisticated choice of subobjects functor.
Observe that the family of πn’s can be seen as a kind of restricted
subobject functor.

In ’17, Fosco Loregian and I worked on understanding how much
Homotopical Algebra is concrete.
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Thm. Loregian, DL ’17
LetM be a pointed model category; if there exist an index n ∈ N ≥ 1
and a ‘weak classifying object’ for the functor πn :M→ Grp, then
ho(M) is not concrete.

By weak classifying object we mean a very weak notion of
Eilenberg-Mac Lane spaces that we introduced in the paper. There is
no need to specify that Eilemberg-Mac Lane like constructions occur all
the time in model categories.

The following are all examples of weak classifying objects for a model
category:

1 A section for πn;

2 A faithful left adjoint for πn;

3 A full right adjoint for πn.
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Further direction

In the direction of conservativity
1 In his paper Freyd explicitly provides the conservative functor
C → Set. Even in the most elementary case, how does this functor
look like? Might it be interesting to actually use it independently
from its abstract application?

2 It is possible to rephrase Freyd’s theorem saying that if C is
enriched over Set, then there is a conservative functor to Set. Is it
possible to state the same theorem for categories enriched over an
elementary topos?
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Further direction

In the direction of faithfulness
Given two categories A and B we say that A is more complicated than
B (A ≥ B) if there is a faithful functor from B to A.

This sets a partial order on categories. Freyd proved that Set does not
sit on the top of this order. Even more, Set ≤ ho(CW∗).

1 Is this order even total?

2 Is ho(CW∗) the most complicated category?

3 Does any homotopical category have a faithful functor into
ho(CW∗)?
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