RINGS AND MODULES

IVAN DI LIBERTI

This note is going to summarize the content of the 11th lesson of tutoring on the course Rings and modules. Also, attached in the end, there is an exercise sheet.

Contents

1. Class: Noetherian modules	1
1.1. Generalities on noetherianity	1
1.2. Bestiary	2
2. Exercises	3

1. Class: Noetherian modules

In one of our beginning lessons we stressed the importance of being kind of finite dimensional. Today we will focus on a smallness notion that is module theory had much success and was deeply studied: noetherianity. The structure of this lesson is the following. Fist we see a short theoretical digression, then we solve some exercises.

1.1. Generalities on noetherianity.

Definition 1. A modules is noetherian iff any submodule is finitely generated. Equivalently, if any increasing chain

$$N_0 \subset N_1 \subset \ldots$$

of submodules is eventually stationary.

There are many natural examples of noetherian modues over a ring.

$$\mathbb{Z} \qquad \checkmark \qquad \checkmark \\
\mathbb{K}[x] \qquad \checkmark \\
\mathbb{K}[x,y] \qquad \checkmark \\
\mathbb{Z}[x] \qquad \checkmark \qquad \qquad \checkmark \\$$

But not every ring is noetherian.

$$\begin{array}{c|c} \prod_{1}^{\infty} \mathbb{Z} & \mathbf{X} \\ \sum_{1}^{\infty} \mathbb{Z} & \mathbf{X} \\ \mathbb{K}[x_1 \dots] & \mathbf{X} \end{array}$$

The idea behind noetherianity is that as soon as we are working with classical algebraic geometry (i.e. varieties of family of polynomials over a field), everything is noetherian.

Remark 2. Indeed a noetherian module is finitely generated.

Definition 3. A ring which is a noetherian module over itself is called noetherian.

Date: 11 December 2017.

IVAN DI LIBERTI

We are used to the fact that smallness conditions change rigidly the behaviour of a module. The folloing proposition an example of this phenomenology.

Proposition 1.1. Consider an exact sequence of modules.

$$0 \to N \to M \xrightarrow{p} P \to 0.$$

The following are equivalent:

- (1) M is noetherian.
- (2) N and P are noetherian.

Proof. Assume (1). Since N is a submodule of M, it is noetherian. Now observe that a family of submodules P_i of P corresponds to a family of submodules $p^{-1}(P_i)$. of M. This sequence must be stationary because M is noetherian, so their projection is stationary. This proves that P is noetherian too.

Now assume (2). Consider an ascending chain M_i . We want to prove that it is stationary. If we look at the inclusion of M_i into M:

$$0 \longrightarrow N \longrightarrow M \longrightarrow M \longrightarrow P \xrightarrow{p} 0$$

We can consider the pullback N_i as in the diagram above. Call P_i the coequalizer of this pullback. Observe that since N_i is in the kernel of p, there is a map $P_i \to P$.

And when i < j we get a diagram like the following one.

Now observe that eventually in j, the maps $N_i \to N_j$ and $P_i \to P_j$ are isomorphisms, because N and P are noetherian. By 5 lemma we conclude that eventually M_i is isomorphic to M_j , which is the thesis.

1.2. **Bestiary.** In this subsection we see some recurrent ideas when dealing with noetherian rings.

Exercise 1. Let A be a noetherian ring and ϕ a surjective morphism $A \to A$. Then ϕ is injective.

Proof. Consider the following chain of submodules

$$\operatorname{Ker}(\phi) \subset \operatorname{Ker}(\phi^2) \subset \cdots$$

This sequence must be stationary. So there exists n such that $\operatorname{Ker}(\phi^n) = \operatorname{Ker}(\phi^{n+1})$. Now consider an element $a \in \operatorname{Ker}(\phi)$. We want to prove that a is 0. Since ϕ is surjective, so is ϕ^n . Thus there is an element b such that $a = \phi^n(b)$. Clearly $\phi(a) = \phi^{n+1}(b) = 0$. But since $\operatorname{Ker}(\phi^n) = \operatorname{Ker}(\phi^{n+1})$, we have that $\phi^n(b) = 0$, thus

$$a = \phi^n(b) = 0.$$

 $\mathbf{2}$

$11^{\rm th}~{\rm LESSON}$

Definition 4. Recall that a local ring A is a ring with just one maximal ideal, generally called \mathfrak{m} .

The following exercise tell us that some properties are hereditary in noetherian rings.

Exercise 2. A local noetherian ring A such that \mathfrak{m} is principal has principal ideals.

Proof. Consider an ideal $I \subset \mathfrak{m} = (m)$. The idea is quite easy. I must be finitely generated $I = (i_1 \ldots i_n)$. We will prove that each $i_n = a_n m^{k_n}$. where a_n is invertible. This is equivalent to the thesis. Now consider i_n . Since $(i_n) \subset (m)$, m must divide $i_n, m | i_n$, i.e. there exist a_1 such that $i_n = a_1 m$. Moreover $(i_n) \subset (a_1)$. We can repeat this argument for a_1 building a chain $(i_n) \subset (a_1) \subset \ldots$ which must be stationary. So after a finite number of steps a_k is invertible and thus we get

$$i_n = a_n m^{k_n}.$$

2. Exercises

Pay attention, exercises labelled by the tea cup \blacksquare may not be incredibly challenging, even not challenging, but it is important keep them in mind, so take your time when solving them and be careful to find a formal and correct solution. Exercises labelled by the danger international sign \triangle are very challenging.