
RINGS AND MODULES

IVAN DI LIBERTI

This note is going to summarize the content of the third lesson of tutoring on
the course Rings and modules. Also, attached in the end, there is an exercise sheet.

Contents

1. Class: Trace operators 1
1.1. The free case 2
1.2. The projective case 3
2. Exercises 6

1. Class: Trace operators

Today we solve a problem. You have seen many wonderful tools of module theory,
such as projectives and tensor product. I would like to show you some applications
of these ideas to a chosen problem. Results we see today are not something you
must remember, nor something you will use in your life but techniques and ideas
we are going to use as tool when solving the problem are standard tools in module
theory. We are learning how to fish, by going fishing.

A well know result in linear algebra is the following theorem.

Theorem 1.1. Consider the vector space of matrices M(K, n) and a linear operator

t : M(K, n)→ K
such that t(AB) = t(BA). Then t = λtr for a suitable λ in K.

Since in vector space every module is free we can rephrase in a more fancy way.

Theorem 1.2. Consider the vector space End(V ) for a finitely generated vector
space V , and a linear operator

t : End(V )→ K
such that t(f ◦ g) = t(g ◦ f). Then t = λtr for a suitable λ in K.

This theorem says that operators with the property t(AB) = t(BA) are essen-
tially unique in vector spaces. Equivalently, the subspace Tr ⊂ Hom(End(V ),K)
of operators such that t(AB) = t(BA) has dimension 1. So here comes a natural
question, is this still true in modules?

There are many problems when asking this question.

• We have not anymore a candidate solution for the generator of Tr, since
what is the trace of an endomorphism of a module?
• We have no notion of dimension.

Although we have no clear formulation, what we want is quite clear. How many,
essentially different, elements are there inside Tr?

Date: 12 October 2017.

1



2 IVAN DI LIBERTI

Problem 1.3. Understand the submodule Tr ⊂ Hom(End(M), A) of operators
such that t(f ◦ g) = t(g ◦ f) for a given finitely generated module M . We call an
element t ∈ Tr a trace operator.

Let’s start with a concrete example.

Exercise 1. How many trace operators are there when M = Z6 and A = Z?

Proof. And in fact there are no trace operators but 0. First, observe that for any
f ∈ End(Z6) we have that 6 · f is the 0 function. In fact,

(6 · f)(v) = f(6 · v) = f(0) = 0.

Now suppose there is one and call it t. Call f and element such that t(f) 6= 0.
Here comes the absurd.

0 6= 6 · t(f) = t(6 · f) = t(0) = 0.

�

Now we come to a case in which we can recover in some sense hypotheses of we
lost: basis and trace.

1.1. The free case. The case M = An behaves more like vector spaces.

Theorem 1.4. If M = An and A is domain, a trace operator is a normalization of
the sum of elements on the diagonal of the matrix.

Proof. When A is a domain one can tensor by quotients Q(A) of A and get an
inclusion,

End(M) ⊂ End(M)⊗A Q(A).

If one can extend the operator to the whole module, then the answer is close... So
suppose to have an operator tr : End(M) → A, because of linearity it’s enough to
define t̄r on Eij ⊗ a

b . We put

t̄r(Eij ⊗
a

b
) = tr(Eij)⊗

a

b
.

One can see this map as the map tr ⊗ id, obtainted by functoriality of tensor
product. This extends the operator to a linear operator

End(M)⊗A Q(A)
t̄r→ A⊗A Q(A) = Q(A).

Is t̄r a trace operator? We can prove it again on generators.

t̄r(Eij ⊗
a

b
◦ Ehk ⊗

c

d
) = t̄r(Eij ◦ Ehk ⊗

ac

bd
)

= tr(Ehk ◦ Eij)⊗
ac

bd

= tr(Ehk ◦ Eij)⊗
ac

bd

= t̄r(Ehk ⊗
c

d
◦ Eji ⊗

a

b
).

We proved that any trace operator on An is a restriction of a trace operator on
Q(A)n, thus we can apply the classification of trace operator on vector spaces. �

Remark 1. We strongly used the hypotesis that to tensor is not going to kill
anything. So Ann(m) shoud be 0 for any element to make this proof work. In the
case M = Z6 we have End(M) 6⊂ End(M)⊗A Q(A).



3rd LESSON 3

Are we happy of this result? Is this enough? Well, this is a good result but it
is quite unsatisfactory. In the first lesson we have seen that many modules behave
very differently from An, so we cannot guess what is going to happen for a generic
module.

We want now to study this situation when M is projective. Thus we are going
to call it P . We will start with some general observation on projective modules.

1.2. The projective case.

Remark 2. 1 Any projective, finitely generated module is covered by a free
module, as we know from first lesson,

F
p
� P.

Projective modules have a very special property, this surjection splits. This is quite
easy to prove. Let’s give a look to the following diagram.

F P

P

Where the dotted arrow exists because P is projective. This map must be
injective, because the composition with the surjection is the identity. Thus F splits

F = P ⊕Ker(p).

Remark 3. 1 When P is a direct summand of F , P is projective. This is quite
easy to prove too.

P F

A B

Since P is a direct summand, we can extend any map P → B to a map F → B,
by putting the map 0 elsewhere.

P F

A B

Now we can find a map F → A because F is projective, and the composition
P → F → A is the map we were looking for.

Corollary 1.5. Projective modules are precisely direct summands of free ones.

Remark 4. 1 If we have a projective module P and a cover for it F � P . We
can push endomorphism of F to endomorphisms of P . We call p the projection and
i the section P → F .

F F

P P

i p

So we get a projection

End(F ) � End(P ),



4 IVAN DI LIBERTI

mapping f 7→ pfi. In fact, as before, one can prove that End(P ) is a direct
summand of End(F ).

Remark 5. In linear algebra, for any finitely generated vector space V , one has
that the dual

Hom(V,K) ∼= V.

This is totally false in module theory, the easy counterexample is our dear Z-
module Z6. Nonetheless, if P is finitely generated projective module, one gets back
the statement

Hom(P,A) ∼= P.

Proof. The proof is very instructive but quite tricky. First remember that there is
a free module F such that F = P ⊕N , where N is projective too. If P is finitely
generated we can choose F to be An for a suitable n. Surely we have that

An ∼= Hom(A,An) ∼=
n⊕
1

Hom(A,A) ∼= Hom(An, A).

In this equation we used extensively that modules have finite biproducts. Now if
we substitute An with P ⊕N we get:

P ⊕N ∼= Hom(P,A)⊕Hom(N,A).

In principle this is not enough to prove the thesis, but if one follows precisely the
chain of isos discovers that P has image in Hom(P,A). �

Remark 6. Now comes some magic. Be prepared. We shall tell where we want to
get, and the prove it. We want to prove that when P is projective there is at least
a trace operator

t : End(P )→ A.

But how to do so? The idea is that we can find a natural map

t : Hom(P,A)⊗ P → A,

which maps
∑
aifi ⊗ pi 7→

∑
aifi(pi) and observe that for a projective module

Hom(P,A)⊗ P ∼= End(P ).

The obtained composition is a trace operator.

Remark 7. Hom(P,A)⊗ P ∼= End(P ).

Proof. By abstract nonsense we can prove that

Hom(Hom(P,A)⊗ P,A) ∼= Hom(Hom(P,A),Hom(P,A)) ∼= Hom(P, P ).

If we could prove that Hom(P,A) ⊗ P is projective, than we are done. Since
Hom(P,A) ∼= P it is enough to prove that P ⊗ P is projective. This is a good
exercise for you, and you find it in the exercise sheet. �

Theorem 1.6. Let P be a projective module on a domain A. Then there is
precisely 1 trace operator up to normalization.

Proof. Consider a trace operator

t : End(P )→ A.

Remember that the finite cover F → P splits, so F ∼= P⊕N and N is projective too,
so there is an other trace operator s. We call i, p the inclusion and the projection
for P and j, n the inclusion and the projection for N . It might sound surprising,
but the operator

t̄ : End(F )→ A.



3rd LESSON 5

defined by t̄(fg) = at(pfgi) + bs(nfgj) is a trace operator for a suitable choice of
a, b ∈ A.

Thus we proved that a trace operator on P is just the restriction of a trace
operator on F , but we studied this scenario before.

�

Remark 8. It is quite natural to ask how the hell one should find the t̄ we presented
in last theorem. Especially, what about a and b? The idea is in fact quite simple.
If we have a matrix

M =

[
A B
C D

]
Its trace is simply the same of the matrix

M =

[
A 0
0 D

]
A and B are respectively pMi and nMj. So that tr(M) = tr(A) + tr(B). Now,

if you have two traces defined on the subspaces indicated by the two squares A and
B, they are a restriction up to scalar of the trace defined on the environment, this
is where a and b appear.

Remark 9. Z6 is not a projective Z-module.

Problem 1.7. We come againg to our question, what about a genericM? Honestly,
I don’t know. The problem of trace operators have been formulated with the
purpose of keeping this lesson, there is no literature on the subject and I have not
investigated all possibilities, but you could try! You have tools!

Remark 10. So, what we learned today? Nothing, I would say. We learned that
we know enough theory to destroy a problem. We discovered that we already knew.
This is learning, Plato.



6 IVAN DI LIBERTI

2. Exercises

Pay attention, exercises labelled by the tea cup 1 may not be incredibly chal-
lenging, even not challenging, but it is important keep them in mind, so take your
time when solving them and be careful to find a formal and correct solution. Ex-
ercises labelled by the danger international sign o are very challenging.

Exercise 2. 1 Read today class twice. There are so many tricks to learn.

Exercise 3. Consider two modules M,N . Prove that

End(M ⊕N) ∼= End(M)⊕ End(N)⊕Hom(M,N)⊕Hom(N,M),

then use this result to conclude that for any couple of integers a, b one has that
(a+ b)2 = a2 + b2 + 2ab.

Exercise 4. In Remark 6 I did not prove that the obtained operator is a trace
operator. Prove it.

Exercise 5. If P,Q are projective finitely generated modules, than P ⊗Q is pro-
jective too.

Exercise 6. In Theorem 1.6 I did not prove that t̄ is a trace operator. Prove it.
At some point you might need that idF = jn+ ip.

Exercise 7. o This is addressed to the wannabe category theorist. What can you
say about trace operators when M is R[x] and A = R?


	1. Class: Trace operators
	1.1. The free case
	1.2. The projective case

	2. Exercises

