
RINGS AND MODULES

IVAN DI LIBERTI

This note is going to summarize the content of the 4rd lesson of tutoring on the
course Rings and modules. Also, attached in the end, there is an exercise sheet.
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1. Class

Today class will have two parts. In the last lesson we have seen that sometimes
projectives behave like free modules. In the first part of the lesson we will that
some strong assumptions on the ring will turn any projective into free modules. In
the second part we will look at two notions of smallness for modules.

1.1. PID have trivial projectives.

Definition 1. A ring A is PID if it is a domain and every ideal I is generated by
an element I = (a).

Z 3
K 3
K[x] 3
K[x, y] 7
Z[x] 7

Remark 2. Recall that any euclidean domain is PID and that any PID is UFD.

Theorem 1.1. For PID rings, any submodule of a free module is free.

Proof. We will prove the theorem just when F is finitely generated. The proof can
be generalized easly, but I cannot assume that you have familiarity with ordinals.
Consider a basis {ei} of F . We will prove by induction on the cardinality of the
basis that any submodule is free. In the case that F = A, the condition that
any submodule is free is precisely the condition that A is PID. The hypothesis of
domain is used because (a) ∼= A/Ann(a). Now let’s focus on the inductive step.
Call M the submodule. Since the basis of F has cardinality n + 1 we can split
F = Fn⊕ < en+1 >. Call Mn = M ∩ Fn. If Mn = M , we are just done by
inductive hypotesis. Suppose now it is not the case, now for each element m ∈ M
we have that

m = mn + a ·mn+1.

Define I to be the ideal {a ∈ A : ∃mn ∈ Mn : a · en+1 + mn ∈ M}. This is
an ideal and must be principal, so let’s say I = (a). Now one can show that
M = Mn⊕ < amn+1 >, and we are done. �
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Corollary 1.2. Projectives are free, when A is a PID.

1.2. Two notion of smallness. Now we will give a look on two different notions
of smallness for a module. One is a tribute to this department, the other was very
important in the history and the characterization of abelian categories. They will
look quite similar to you.

1.2.1. ⊕-smallness.

Exercise 1. A module M is ⊕-small if every morphism f : M → ⊕Ai factors
through a finite direct sum of Ai’s.

Let M be a ⊕-small objects. Prove that the following:

(1) Quotients of M are ⊕-small.
(2) M = N ⊕K is ⊕-small iff N,K are ⊕-small.

Proof. (1) Just look at the diagram,

Q
⊕

Ai

M

⊕Ajp

l

where the dotted arrow exists because l must vanish on the kernel of p.
(2) Because of (1) N and K must be ⊕-small, they are quotients of M . When

N and K are ⊕-small, we can look at the following diagram:

K ⊕As

M
(
⊕Aj

)
⊕
(
⊕As

) ⊕
Ai

N ⊕Aj

Where the dotted arrow exists because M has the universal property of the sum
of K and N . Since the union of finite sets if finite, the dotted map is a solution for
our problem. �

Now comes a natural question. Which modules are ⊕-small? Here we try to give
a partial answer. We will discover that finitely generated modules are ⊕-small.

Exercise 2. A finitely generated free module is ⊕-small.

Proof. This is very easy. �

Corollary 1.3. A finitely generated module is ⊕-small.

Proof. It is a quotients of a finitely generated free one. �



4th LESSON 3

1.2.2. ω-smallness. The notion of ω-smallness is related to nowadays research work
at MU. The idea is the following. The is a notion of smallness very similar to the
one we have seen before which is totally categorical and characterized finitely gen-
erated modules. Thus this notion can be moved to any category and be employed
to study small objects in other context.

The only theorem that we will prove in this section is that a modules if ω-small
if and only if is finitely generated. Is this a failure for this definition just because
we rediscovered something we already knew? No, contrariwise this is a bridge to
give a notion of finitely generated object in any category!

Definition 3. A direct system of modules {Mi} is a class of modules such that
given two modules Mi and Mj there is a module Mk is the system such that Mi

and Mj are submodules of Mk.

Remark 4. The union of all modules in a directed system is a module.

Definition 5. Let Mi be a chain of modules. A module M is ω-small if every
morphism f : M →

⋃
Mi where the family of {Mi} is a directed system factors

through an Mi.

Exercise 3. Quotients of ω-small modules are ω-small.

Proof. This is just the same of 1. �

Exercise 4. A finitely generated free module is ω-small.

Proof. Let {ei} be a basis for F . Call Mi the module generated by < f(ei) >. By
induction you find an Mt where all this modules sit on. That is the solution. �

Exercise 5. ω-small modules are precisely finitely generated modules.

Proof. Exercises 3 and 4 prove together that finitely generated modules are ω-small.
On the other hand, consider an ω-small module M . Now observe that a module is
the union of the directed system of its finitely generated submodules. and look at
the following diagram:

M
⋃
Mi

Mi

id

And since Mi is finitely generated, so must be M .
�
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2. Exercises

Pay attention, exercises labelled by the tea cup 1 may not be incredibly chal-
lenging, even not challenging, but it is important keep them in mind, so take your
time when solving them and be careful to find a formal and correct solution. Ex-
ercises labelled by the danger international sign o are very challenging.

Exercise 6. 1 Enjoy your tea.
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