## TOPOLOGY

## IVAN DI LIBERTI

ABSTRACT. This note summarizes the content of the 10th lesson of tutoring on the course Topology 2019. Also, attached at the end, there is an exercise sheet.

## 1. VAN KAMPEN

The last lesson left an open problem. Given a non contractible space that we feel is simply connected, how do we show it?! How favourite example of this phenomenon is the sphere, which is quite far from being contractible.

**Remark 1.** The lesson of today provides a very effective and completely alternative technique to coverings to compute fundamental groups and in particular show that some spaces are simple connected.

**Remark 2.** The general idea is quite simple let  $\mathcal{X}$  be a space of which we want to compute the fundamental group and imagine that we have a nice splitting of the space in two subspaces  $\mathcal{Z}$  and  $\mathcal{Y}$  of which we do understand the fundamental group such that  $\mathcal{X} = \mathcal{Z} \cup \mathcal{Y}$ , can we recover the  $\pi_1(\mathcal{X})$  from the fundamental groups of  $\mathcal{Z}$  and  $\mathcal{Y}$ ? The answer will turn out to be true.

**Remark 3.** Intuitively, since  $\mathcal{X} = \mathcal{Z} \cup \mathcal{Y}$ , we could hope for a surjective map  $\mathcal{Z} \coprod \mathcal{Y} \twoheadrightarrow \mathcal{X}$ , and thus we expect to see a surjective map  $\pi_1(\mathcal{Z}) \coprod \pi_1(\mathcal{Y}) \twoheadrightarrow \pi_1(\mathcal{X})$ , whatever the symbol  $\coprod$  means among groups.

Remark 4. Thus in this lesson we have essentially two things to do,

- (1) the first one is to develop a suitable notion of join of groups.
- the second one is to exploit it in order to get informations on the fundamental group of Z ∪ Y.

# 1.1. Free product of groups.

**Remark 5.** Let *G*, *H* be two groups. Then the set  $G \star H$  is the quotient of set of all finite words in the elements of *G* and *H* 

$$g_{11}g_{12}\cdots g_{1n_1}h_{11}\cdots h_{1n_2}\cdots g_{n1}\cdots g_{nn_n}h_{n1}\cdots h_{nn_n}$$

under the equivalence relation that identifies two words if we can apply the multiplication of some of the two groups. For example, imagine that  $g_1g_2 = g_3$  in G, then

$$g_1g_2h_1 = g_3h_1.$$

**Remark 6.**  $G \star H$  has a very natural group structure obtained by just-apposition of words. The identity of  $G \star H$  is the empty word.

**Remark 7.** There is an injective map from both *G* and *H* into  $G \star H$ , sending (say) *g* to the atomic word containing only *g*. This map is evidently a group homomorphism. We indicate these maps with the names  $\iota_G$  and  $\iota_H$ .

**Remark 8.** Observe that G is always isomorphic to  $G \star 1$ , where 1 is the trivial group with just one element.

Date: 6 April 2019.

**Proposition 1.1.** Given two group homomorphism  $G, H \rightarrow K$  there is a unique extension to the free product that matches the natural inclusions.



*Proof.* The proof is quite simple. We define

$$(f \star l)(g_{11}g_{12}\cdots g_{1n_1}h_{11}\cdots h_{1n_2}\cdots g_{n1}\cdots g_{nn_n}h_{n1}\cdots h_{nn_n})$$

to be defined element-wise, in the sense of the following line

$$f(g_{11})f(g_{12})\cdots f(g_{1n_1})l(h_{11})\cdots l(h_{1n_2})\cdots f(g_{n1})\cdots f(g_{nn_n})l(h_{n1})\cdots l(h_{nn_n}).$$

Obviously last just-apposition is a product is computed in *K*. Observe that this is completely necessary because we want that  $(f \star l) \circ \iota_{G/H} = f/g$  and the images of  $\iota_G$  and  $\iota_H$  generate  $G \star H$  under product.

## 1.2. Van Kampen theorem.

**Remark 9.** Given  $i : (\mathcal{Z}, z) \subset (\mathcal{X}, z)$  a (pointed) subspace, we get a map  $\pi_1(i) : \pi_1(\mathcal{Z}, z) \rightarrow \pi_1(\mathcal{X}, z)$ . But be careful, this map is far from being injective in general, for one example, see the inclusion of the circle in the disk.

**Remark 10.** Given two subspaces  $(\mathcal{Y}, z)$  and  $(\mathcal{Z}, z)$  contained in  $(\mathcal{X}, z)$ , we get two maps:



Observe that z has to lie in the intersection  $\mathcal{Y} \cap \mathcal{Z}$  for this to have sense. Thus, by the description of the free product, we get a map



But please, do not get carried away, this abstract nonsense cannot generate a theorem, for example  $\phi$  is not always surjective. For example, write  $\mathcal{X}$  as the union of its points, if such a  $\phi$  were always onto, then any space would be simply connected.

#### 11th LESSON

**Theorem 1.2** ((Weak) Van Kampen). Let  $\mathcal{X} = \mathcal{Y} \cup \mathcal{Z}$  be a space written as the unions of two open subsets. Assume moreover that  $\mathcal{Y}, \mathcal{Z}$  and  $\mathcal{Y} \cap \mathcal{Z}$  are path connected. Then the map  $\phi$  described above is onto. (Recall that the base point has to be chosen in the intersection).

*Proof.* Please, see **59.1** in **Topology** by **Munkres**. In class we will follow his proof line by line.  $\Box$ 

Corollary 1.3. Spheres are simply connected.

*Proof.* Write  $S^n$  as  $S^+ \cup S^-$ , where  $S^+$  is the set

$$S^+ = \{(\bar{x}, z) : z > -\epsilon^1\},\$$

and S<sup>-</sup> is defined analogously. Observe that both of them are contractible and satisfy the hypotheses of (w)VK, thus  $\pi_1(S^n)$  admits a surjection from the trivial group with one element, and that means that it has to be trivial.

 $<sup>^{1}\</sup>epsilon$  should be positive and very close to 0.

#### IVAN DI LIBERTI

## 2. EXERCISES

Pay attention, exercises labelled by the tea cup  $\blacksquare$  may not be incredibly challenging, even not challenging, but it is important keep them in mind, so take your time when solving them and be careful to find a formal and correct solution. Exercises labelled by the danger international sign **A** are very challenging. Exercise labelled by **\blacksquare** come from the beautiful book **Elementary Topology Problem Textbook**, by Viro, Ivanov, Netsvetaev and Kharlamov.

Remark 11. All the exercises are mandatory.

**Definition 12** (The topologist bag). The topologist bag *B* is a subspace of  $\mathbb{R}^3$  and is a sphere together with the diameter connecting the north pole to the south pole.

**Exercise 1** (The topologist bag is a bag). Prove that the topologist bag is homeomorphic to a sphere together with a path connecting the north pole to the south pole that does not lie inside the sphere.

Exercise 2. Compute the fundamental group of the topologist bag.

Exercise 3. Exhibit a simply connected covering of the topologist bag.