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ABSTRACT. This note summarizes the content of the second lesson of tutoring on the
course Topology 2019. Also, attached at the end, there is an exercise sheet.

1. BESTIARY

Welcome back to our course in topology. In the first lesson we focused on the definition
of topological space and we tried to provide an intuition for such gadgets. Our motivation
was mostly rooted in the theory of metric spaces.

Remark 1. According to the main theorem of the first lesson, a topology on X is the
data of a closure operator on (X) that generalizes the proprieties of the closure operator
associated to a metric space.

The lesson of today has two main targets:
(1) Take a safari trough some examples of topological space;
(2) See how we can encode some interesting notions into geometric concepts.

To be more precise on the second aim of this lesson, we have already seen how every
metric space is topological. Today we will see how to associate a topological space to
any preorder and to any ring. Surprisingly (or maybe not), order-preserving maps and ring
homomorphism have geometric representation.

Rings Metric Spaces

Spaces

Preorders
Before going on, we recall some notations and definitions from the previous lesson and

we remark some features of these definitions.

Definition 2. A topological space is a couple  = (X,�) where X is a set and � ⊂ (X)
is a family of parts stable under arbitrary union and finite intersection containing the all set
and the empty set.

(1) The space will be always indicated with the corresponding greek letter. Thus, for
example, � will be the topology of  and � will be the topology of  .

(2) � is the topology.
(3) an element O ∈ � is an open set.
(4) the complement of an open is a closed set.
(5) A topology could be given by its family of closed sets. Of course this family is

stable under arbitrary intersection and finite union.
(6) To every topological space  = (X,�) one can associate a closure operator cl� ∶

(X) → (X), mapping a set A to the smallest closed set containing A.
(7) In a topological space  = (X,�) a point x is near a setA if and only if x ∈ cl(A).

Date: 25 February 2019.
1



2 IVAN DI LIBERTI

CONTENTS

1. Bestiary 1
1.1. Discrete & indiscrete topology 2
1.2. The real line ℝ 2
1.3. Cofinite topology & polynomials on ℝ 3
1.4. Alexandroff spaces & specialization topology 3
1.5. The spectrum of a ring 4
2. Exercises 5

1.1. Discrete & indiscrete topology.

Definition 3. Let X be a set. The discrete topology on X is the topology in which every
element of (X) is declared to be open.

Remark 4. It is worthy to say that this topology is induced by a metric, that is

d(x, y) =

{

0 if x = y
1 if x ≠ y.

In fact the closure of a set A ⊂ X, that is defined to be the set of points whose distance
from A is 0 is A itself, thus every set is closed with this metric. Observe that a different
metric might induce the same topology, it would be enough to say that d(x, y) = 5 when
x ≠ y. This means that it might happen that two metrics on the same set induce the same
topology.

Remark 5. Let  →  be a function. When the domain is a set endowed with the discrete
topology, every function is a continuous function. This is again completely trivial, because
the counterimage of any set will be open.

Definition 6. Let X be a set. The indiscrete topology on X is the topology in which only
the empty set and the whole set are declared to be open.

Remark 7. There is no metric that induces this topology! In fact, when a topology is
induced by a metric, given two points x, y ∈  there are always two open sets Ox, Oy that
do not intersect such that x ∈ Ox and y ∈ Oy. In these cases one say that the topology
distinguishes points, or that the topology isHausdorff, or that the topology is T2. Obviously
the indiscrete topology is not T2.

Remark 8. Let  →  be a function. When the codomain is a set endowed with the
discrete topology, every function is a continuous function. This is again completely trivial,
because the counterimage of any open set will be open.

1.2. The real line ℝ. We will not spend much time on this example, because somehow it
is the one that you already know the best. The standard topology on the real numbers is the
one induced by the standard metric. To state it clearly, we declare that a set is closed if and
only if it is closed with respect to the metric,

d(x, y) = |x − y|.
We will use this topology to see some useful counterexamples.

(1) A set A might be nor closed, nor open. That is the case of [0, 1).
(2) A set A might be both, closed and open. That is the case of the empty set. In this

topological space only the empty set and the whole set are both closed and open.
(3) The arbitrary intersection of open sets is not open, in fact

[0, 1) =
⋂

n>0

(

−1
n
, 1
)

.
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1.3. Cofinite topology & polynomials on ℝ.

Definition 9. LetX be a set. The cofinite topology onX is the topology whose closed sets
are finite subsets of X.

Remark 10. Indeed this is a topology, the arbitrary intersection of finite sets is still finite,
and so are their finite unions.

Remark 11. On a finite set, this topology coincides with the discrete topology.

Remark 12. Let’s study the cofinite topology (ℝ,CF) on the real numbers. I claim that
a polynomial function p ∶ (ℝ,CF) → (ℝ,CF) is always continuous with respect to this
topology. Indeed the counterimage of a point is always a finite set, because

p−1(y) = {x ∶ p(x) − y = 0},

and p(x) − y is a polynomial having at most deg(p) solutions. More generally, the coun-
terimage of a finite set A is the union of the counterimage of its points, that is thus a finite
union of finite sets, this shows that p is continuous.

1.4. Alexandroff spaces & specialization topology.

Definition 13. Let  be a topological space. We say that  is Alexandroff if open sets are
stable under arbitrary intersection.

Remark 14. Alexandroff spaces are rare.
(1) The (in)discrete topology is Alexandroff;
(2) The cofinite topology is never Alexandroff on an infinite set;
(3) the standard topology on real numbers is not Alexandroff;
(4) if a topology induced by a metric is Alexandroff, then it is discrete.

Thus, it is quite natural to wonder what’s the generic shape of an Alexandroff space. For-
tunately we have a very natural example of Alexandroff spaces.

Definition 15. Let (P ,≤) be a preordered set1. The specialization topology (or Alexandroff
topology) on P is defined as follows: A ⊂ P is open if and only if it is upwards closed, i.e.
if x ∈ A and x ≤ y then y ∈ A.

Remark 16. The specialization topology on a preorder is always an Alexandroff topology.
Indeed the arbitrary union and intersection of upwards closed sets is upwards closed.

Remark 17. A function f ∶ (P ,≤) → (Q,≤) is order-preserving if and only if it is a
continuous map with respect to the Alexandroff topology.

Theorem 1.1. Any Alexandroff space comes from a poset endowed with the Alexandroff
topology.

Proof. Let  = (A, �) be an Alexandroff space. We equip A with a preorder. Say a ≤ b if
and only if a ∈ cl(b). If you still remember something of nearness relations, we are saying
that a ≤ b if and only if a ⋳ b. We claim that  is precisely (A,≤) equipped with the
Alexandroff topology Alex. In order to prove it, we show that the closure operators cl� and
clAlex are the same function. Since both topologies are Alexandroff, the closure operators
preserve arbitrary unions, i.e.

cl(
⋁

Ai) =
⋁

cl(Ai).

In particular, since every set is the union of its elements, cl� and clAlex are the same function
if and only if the coincide on singletons. To finish, observe that ≤ is defined precisely in
order to make this happen. �

1This means that ≤ is reflexive and transitive.
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1.5. The spectrum of a ring.

Definition 18. LetA be a ring. The spectrum of a ring Spec(A) is the set of is prime ideals2.
Let I be an ideal of A, we define V (I) ⊂ Spec(A) to be the set of all primes containing I .
We endow Spec(A) with the topology whose closed sets are V (I), for I an ideal of A. This
is known as the Zariski topology Z on Spec(A).

Remark 19 (Sanity check). Z is a topology. In fact:
(1) V (I) ∪ V (J ) = V (IJ )
(2)

⋂

k V (Ik) = V (
∑

Ik)

Remark 20. A ring homomorphism A → B induces a continuous function
f−1 ∶ Spec(B) → Spec(A)

between their spectra endowed with the Zariski topology.

2Recall that an ideal p is prime if, whenever a product a ⋅ b belongs to p one of the two elements a, b belongs
to p.
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2. EXERCISES

Pay attention, exercises labelled by the tea cup 1 may not be incredibly challenging,
even not challenging, but it is important keep them in mind, so take your time when solving
them and be careful to find a formal and correct solution. Exercises labelled by the danger
international signo are very challenging. Exercise labelled by� come from the beautiful
book Elementary Topology Problem Textbook, by Viro, Ivanov, Netsvetaev and Khar-
lamov.

Exercise 1. Going back to Rem. 12, prove that if a topology � on the real number makes
all the polynomials p ∶ (ℝ, �) → (ℝ,CF) continuous, then CF ⊂ �. Observe that, together
with Rem. 12 this means that CF is the smallest topology making polynomials continuous.

Exercise 2. Is the Zariski topology T2?

Exercise 3. Prove Rem. 19.

Exercise 4 (1). Prove Rem. 20.

The Book (�). We see some basics of the definition of topology and continuous functions.
2’2 2.B
2’4 2.4,5,6,7,8.

2’12x Only 2.Jx’s
10’2
10’3
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