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ABSTRACT. This note summarizes the content of the third lesson of tutoring on the course
Topology 2019. Also, attached at the end, there is an exercise sheet.

1. SEPARATION AXIOMS

Welcome back to our course in topology. I hope you learnt something in these four
lessons of introduction to topology, because today it’s your day. We will focus separation
axioms, examples, counterexamples and simple exercises. The use of the word separation
axioms for separation properties of topological spaces is not accidental. Depending on what
kind of topological spaces a mathematician typically dealt with, he had a corresponding
notion of decency for topological spaces. Every separation property gives different proof
techniques. The lesson of today will be mostly interactive.

1.1. Kolmogorov, seu T0. In lesson 2, while studying Alexandroff spaces we were very
close to the definition of topological indistinguishability.

Definition 1. Two points x, y in a topological space  are topological indistinguishable
x ≡ y if x is near y and viceversa1.

We observed that topological indistinguishability is an equivalence relation and we used
it in order to construct natural examples of Alexandroff spaces. In fact, in that case we were
using a variation of indistinguishability, that is called specialization preorder.

Exercise 1. A space is T0 if and only if the only point which is topological indistinguishable
from x is x itself.

Given a topological space  we can endow ∕ ≡ with the biggest topology �≡ making
the quotient map � ∶  → ∕ ≡ continuous.

Exercise 2 (Kolmogorification). ∕ ≡ is universal among T0-approximations of  , in the
sense that:

(1) ∕ ≡ is T0.
(2) Every continuous map  →  , where  is a T0-space factors trough ∕ ≡.

Sketch of proof of (2). When a function is continuous, it preserves nearness. This means
that two equivalent points in  are sent in equivalent points in  . Since the image T0, f in
constant on ≡-equivalence classes. Thus there is a set-theoretical factorization of f along
� ∶  → ∕ ≡, this function is continuous. �

Example 2. Most of the topological spaces in nature are much more than T0. For this
reason we just make a list of non T0-spaces:

(1) the indiscrete topology Ind on a set with at least two elements is never T0.
(2) consider ℝ with the euclidean topology E. The topological space (ℝ,E) × (ℝ, Ind)

is not T0, in fact (a, b) and (a, c) are not distinguishable.
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1i.e. x ∈ cl(y) and viceversa.
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1.2. T1. There is no standard name to refer to T1-spaces. Some people call them acces-
sible, or Tychonoff, or Fréchet. I suggest not to use these names, because they are not
very well established, especially the last one might be confused with other terminologies
coming from functional analysis.
Exercise 3. A space is T1 if and only if points are closed sets.
Exercise 4. T1-spaces are T0.
Exercise 5. T1-spaces are stable under products but not under subspaces.
Exercise 6. The following is a list of non T1 spaces.

(1) The Sierpiński space S (the only topology on a set with two points where one is
open and the other is closed) is not T1.

(2) The Zariski topology on a commutative ring is not in general T1.
1.3. Hausdorff, seu T2.
Exercise 7. A space  is T2 if and only if the diagonal {(x, x)}x∈ is a closed set in the
topological product  ×  .
Exercise 8. T2-spaces are stable under product and subspaces.

T2-spaces are separated enough, in the sense that points retain some information about
the topology. We will see two examples of this behaviour, the first one is the exercise below,
the second one is Prop. 1.1, where we show that ℚ knows everything about continuous
functions defined on ℝ.
Exercise 9 (Uniqueness of limits in T2-spaces). Let  be a T2-space and {xn}n∈ℕ be a
sequence in  . Then there is at most one point x that does not belong to and {xn}n∈ℕ but
is near it.
Exercise 10. Let f, g ∶  ⇉  be two continuous functions and  be a T2-space. Then
the subspace of E(f, g) ⊂  defined by

E(f, g) ≔ {x ∈  ∶ f (x) = g(x)},
is a closed subset of  .
Proof. Consider the continuous function f × g ∶  → 2 mapping x ↦ (f (x), g(x)).
Since  is T2, the diagonal Δ is closed in the product 2. To finish, observe that

E(f, g) = (f × g)−1Δ

and thus must be closed because f × g is continuous. �

Definition 3. A subset D of a topological space is dense if its closure is the whole space.
Proposition 1.1. If D is a dense subset of  and  is a Hausdorff space, then every con-
tinuous function f ∶ D →  extends in at most one way to a continuous function from 
to  .
Proof. Consider two extensions g, ℎ ∶  →  . E(g, ℎ) is a closed set containingD, thus it
contains its closure, that is the whole space. This proves that  ⊂ E(g, ℎ), or equivalently
that g coincides with ℎ on  . �

Example 4. The Zariski topology is not T2.
1.4. Regular Hausdorff and higher separation axioms. I will not go very much into
higher notion of separation, you should know that one can go at least as far as T6, passing
trough T31∕2. I shall say something on the notion of T3-spaces, also known as regular.
Regularity is the correct notion to study abstractly metrizability.
Example 5. Metric spaces are regular.
Theorem 1.2 (Uryshon). A space  is metrizable if and only if it is regular and second
countable.
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2. EXERCISES

Pay attention, exercises labelled by the tea cup 1 may not be incredibly challenging,
even not challenging, but it is important keep them in mind, so take your time when solving
them and be careful to find a formal and correct solution. Exercises labelled by the danger
international signo are very challenging. Exercise labelled by� come from the beautiful
book Elementary Topology Problem Textbook, by Viro, Ivanov, Netsvetaev and Khar-
lamov.

Remark 6. Special rule for this week, solve at least 3 exercises!

Exercise 11 (1). Let S be the Sierpinski space and let  = (x, �) be any T1-space. Prove
that there is an embedding e ∶  → S� .

Exercise 12. Let C be a closed subset of the T3 space  . Let ∼ be the equivalence relation
on  defined by

x ∼ y iff x = y or {x, y} ⊂ A.
Let ∕A denote the quotient space ∕ ∼. Prove that ∕A is Hausdorff.

Exercise 13. Let f ∶  →  be a continuous function, where  is Hausdorff. Prove that
the graph

Γ(f ) ≔ {(x, f (x)) ∈  × }
is closed in  ×  .

Exercise 14. Prove that the set of fixed points of a continuous map from a Hausdorff space
to itself is a closed set.
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