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ABSTRACT. This note summarizes the content of the fourth lesson of tutoring on the course
Topology 2019. Also, attached at the end, there is an exercise sheet.
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1. COMPACTNESS

1.1. A vague intuition.

Remark 1. Sometimes people say that a good intuition on the notion of compactness is
finiteness, compact spaces are to spaces like finite sets are to sets. This analogy is based on
both a very geometric perspective on finite sets and some empirical evidences.

Exercise 1. A subset F of the real world (ℝ3) is finite if and only if the subspace topology
is discrete and compact.

Proof. If F is finite, then the subspace topology is discrete, in fact let � be the minimum
of the distances between the points pi ∈ P , then B(pi,

�
2 ) ∩ F = {pi}. Each of these sets

is open in the topology of subspace, thus every point is open, so the induced topology is
discrete. This space is trivially compact, because the number of open sets is finite in first
place. Now, assume that F is discrete and compact, then every point is open, and thus the
family of points is an open cover of F . Since F is compact we can extract a finite subfamily
(of points) that covers F . This means that F was finite in first place. �

Remark 2. This is a very interest mathematical statement, in the sense that is assumes
that every concept is inherently geometric, when we discuss about mere sets, we are in
fact talking about geometric entities of which we are ignoring their topological status. The
previous lemma proves that from this geometric point of view, finite is facile understanding
of discrete and compact.

Remark 3. As a result of the previous remark, finite is at most a superficial shorthand for
the notion of compactness, yet some characteristic properties of being finite have to reflect
on compact spaces. We shall list some properties of finite sets that naturally come to mind
to see if they are shared with compact spaces:

(1) a subset of a finite set is finite;
(2) the image of a finite set is a finite set;
(3) every function from a finite set X → ℝ has a maximum;
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In the following lemmas we see how this lemmas generalize to compact spaces.
Exercise 2. A closed subset of a compact space is compact.
Proof. Skipped. �

Exercise 3. A continuous function f ∶  →  maps compacts into compacts.
Proof. Let C be a compact subspace. Let Ui be an open cover of f (C), then f−1(Ui) is an
open cover of C . Since C is compact, we can extract a finite family f−1U1,… , f−1Un of
open sets covering C . Thus U1,… , Un covers f (C), as desired. �

Exercise 4. Every continuous function from a compact  space to ℝ has a maximum.
Proof. Let f ∶  → ℝ be a function, f () is compact in ℝ, thus it is closed and limited.
This precisely means that f is bounded and that its supremum is reached. �

Remark 4. I hope you catched the motto here: there is some trace of compactness in the
notion of finiteness and we can use our intuition on finiteness to guess the behaviour of
compact spaces.
1.2. A non metric example of compact space.
Remark 5. It is possible to reformulate the notion of compactness in term of closed sets. A
space  is compact if and only if, given a family of closed sets Ci such that

⋂

Ci = ∅, there
is a finite subfamily whose intersection is empty. Of course this formulation is obtained
taking the complement of the formulation with open sets.
Remark 6. The most natural example of compact space is a closed bounded subset of a
metric spaces. On the other hand, those are not the only example of compact spaces, some
very interesting spaces are compact!
Example 7. ℝ with the cofinite topology is compact.
Proof. Let Ci be a family of closed sets whose intersection is empty. Recall that in this
topology a set is closed if and only if is finite. Consider C1, and call p1,… , pk its points.
Since the intersection of the whole family is empty, there exists Cj such that pj ∉ Cj . Thus
this selection of Cj’s together with C1 has empty intersection, as desired. �

1.3. Toolbox and puzzles.
Exercise 5. Let f ∶  →  be a continuous map, where is compact and is Hausdorff.
Then f is closed.
Proof. Proof. LetZ be a closed subset of . We know that it must be compact too. Images
of compact spaces under continuous maps are again compact, sof (Z) is compact. But that
means it is also closed, because Y is Hausdorff. �

Exercise 6. Let  be a compact space, then the projection � ∶  ×  →  is closed.
Proof. Try yourself! �

Exercise 7 (Characterization of continuous functions for compact Hausdorf spaces). Let
f ∶  →  be a continuous map with  compact Hausdorff. Then f is continuous if and
only if the graph Γ(f ) is closed.
Proof. Assume that f is continuous, we have already seen that if is Hausdorff, the graph
is closed, thus in this case the graph is closed a fortiori. For the other implication, assume
that the graph is closed. Let C be an closed set in  . Then the intersection Γ(f ) ∩ ( ×C)
is also closed. If we apply Exercise 6, we can deduce that

�(Γ(f ) ∩ ( × C)) = f−1(C)
is closed and equivalently, that f is continuous.

�
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2. EXERCISES

Pay attention, exercises labelled by the tea cup 1 may not be incredibly challenging,
even not challenging, but it is important keep them in mind, so take your time when solving
them and be careful to find a formal and correct solution. Exercises labelled by the danger
international signo are very challenging. Exercise labelled by� come from the beautiful
book Elementary Topology Problem Textbook, by Viro, Ivanov, Netsvetaev and Khar-
lamov.

Exercise 8 (1). Prove Ex. 6.

The Book (�). We dig into the chapter about compactness.
17’1
17’3
17’4
17’9 X,Y,Z.
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