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ABSTRACT. This note summarizes the content of the first lesson of tutoring on the course
Topology 2020. Also, attached at the end, there is an exercise sheet.

1. WHAT IS A GEOMETRIC OBJECT?

Definition 1. A topological space is a couple  = (X,�) where X is a set and � ⊂ (X)
is a family of parts stable under arbitrary union and finite intersection containing the all set
and the empty set.

Notation 2.
(1) � is the topology.
(2) an element O ∈ � is an open set.
(3) the complement of an open is a closed set.
(4) since the complement of a set individuates the set itself, a topology could be given

by its family of closed sets. Of course this family is stable under arbitrary intersec-
tion and finite union.

(5) in this note the topology of the space will be always indicated with the correspond-
ing greek letter. Thus, for example, � will be the topology of  and � will be the
topology of  .

Definition 3. A continuous function f ∶  →  is a function such that respects the
topology, i.e. f−1(�) ⊂ � .

The aim of our first meeting is to understand something of these obscure definitions.
Topology was introduced with the aim of clarifying real analysis and eventually led to our
standard concept of geometric object. A geometric object should be an hack, possibly a
set, equipped with a suitable notion of thereness. Probably the most successful definition
of geometric object in the direction of compromising expressiveness with intuitiveness is
the one of metric space, that we recall.

Definition 4. A metric space is a couple = (M,d) whereM is a set and d ∶M2 → ℝ
is a function with the following properties.

M1 d(x, x) = 0
M2 d(x, y) > 0 (if x ≠ y).
M3 d(y, x) + d(x, z) ≥ d(y, z).

Remark 5. Ah-ah! I fooled you! Haven’t I forgotten the condition of symmetry?! Some-
how that’s precisely the aim of this class: understanding why a metric space is a geomet-
ric object, discerning between topological properties and inherently metric ones. A non
symmetric metric space is still a geometric object, meaning that we can keep a geometric
intuition on it.

Remark 6. In the definition of metric space we use our understating of real numbers to
establish if two points are far. Something is here if it is not far from me [M1], something is
there if it’s very far from me [M2], and - of course - never go from Brno to Prague passing
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trough Paris [M3]! I will assume that you have studied and understood the notion of metric
space in your past and I will try to use the notion of metric space as a shelter to justify the
definition of topological space.

Remark 7. We use some properties of real numbers to navigate a metric space. For in-
stance, since ℝ is ordered we can say that something is further than something else. Since
it is complete we can emulate the idea of approaching to a point. All in all, there are no
doubts that the most relevant concepts in metric spaces are adherence and convergence.
You might even not remember the definitions of the two, but you probably will remember
that most of the proofs in the theory of metric spaces are based on a suitable variation of
the sentence the point x is very close to the set A. That’s the case of a sequence A = {xn}
converging to a point x. With these ideas in mind we can define a relation on a metric space
as follows.

Definition 8 (Nearness in metric spaces). Let = (M,d) be a metric space. Its nearness
relation ⋳d ⊂ M ×(M) is the subset of couples (x,A) such that d(x,A) = 0. Recall that
the distance d(x,A) is defined to be

d(x,A) ≔ inf
y∈A

d(x, y).

If (x,A) belongs to ⋳d we say that x is near A and we write x ⋳d A in a more conventional
infix notation.

Remark 9 (Nearness and continuity). Continuity in metric spaces can be defined via the
�∕� nonsense (which is not very intuitive) or using convergence of sequences. In both cases
it is quite easy to see that one can rewrite the continuity condition in terms of the nearness
relation as follows. A function between metric spaces f ∶  →  is continuous if and
only if whenever x ⋳ A then f (x) ⋳ f (A). This means precisely that f preserves
nearness, isn’t this one of the most intuitive formulations of continuity?

Proof. If f preserves nearness, it must be continuous. Indeed if (xn)n∈ℕ converges to x,
then x ⋳ {xn}n∈ℕ. Since f preserves nearness, f (x) ⋳ {f (x)n}n∈ℕ, that means pre-
cisely that f preserves converging sequences. For the other implication, assumes that f
is continuous and x ⋳ A. Since d(x,A) = 0 there must be a sequence (xn)n∈ℕ ∈ A
such that limn d(x, xn) = 0. Since f is continuous, limn d(f (x), f (xn)) = 0 and thus
f (x) ⋳ f (A). �

Remark 10 (Nearness and closure operators). Recall that ametric space comes equipped
with a closure operator cl ∶ (M) → (M) defined by the formula:

cl(A) ≔ {x ∈M ∶ d(x,A) = 0}.
It is essentially a tautology to say that x ⋳ A if and only if x ∈ cl(A). This observation sets
a very important conceptual link between closures and nearness relations.

Now we come to an axiomatization of the nearness relation in a metric space. Keeping
in mind its definition in the metric case we find every axiom extremely natural.

Definition 11. LetX be a set. A nearness relation ⋳ onX is a subset ⋳ ⊂ X ×(X) with
the following properties.

N1 no element is near the empty set.
N2 if x ∈ A then x is near A.
N3 if x is near A ∪ B then it is near A or it is near B.
N4 if x is near A and every element of A is near B, then x is near B.
To be formal, we rewrite one of the axioms of the previous list in Bourbakist style: [N3]

can be reformulated as x ⋳ A ∪ B ⇒ x ⋳ A or x ⋳ B.

Remark 12. A nearness relation establishes a notion of fuzzy membership, the structure
believes that an element belongs to a set (x ⋳ A), even if it does not actually sit inside it.
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Example 13 (Metric nearness is a nearness relation). Just for some sanity check, we shall
see that the metric nearness is indeed a nearness relation.

N1 is completely evident.
N2 is true because of [M1], that is d(x, x) = 0.
N3 is due to the fact that

inf
y∈A∪B

d(x, y) = min{inf
y∈A

d(x, y), inf
y∈B

d(x, y)}.

Indeed the left hand side is ≤ then the right hand side. On the other hand, if the
LHS < RHS, then there is some y ∈ A ∪ B such that:

inf
x∈A∪B

d(x, y) ≤ d(x, y) < min{inf
y∈A

d(x, y), inf
y∈B

d(x, y)}.

But then d(x, y) is strictly smaller than both the infs which is clearly impossible
because y has to belong either to A either to B.

N4 relies on the fact that if x is near every element ofA and every element ofA is near
B, then x ∈ cl(A) ⊂ cl(B) and thus x ⋳ B.

Example 14 (A trivial example). Another nearness relation that in fact is metrizable but
does not have a metric spirit in first place is defined by

x ⋳ A iff x ∈ A.

Example 15 (Geometric objects might not be metric). We find the concept of nearness
much weaker than the notion of distance and probably more suitable for some concrete
geometric examples. The set of functions ℝℝ can be endowed with a very natural nearness
relation:

f ⋳ A iff for all x ∈ ℝ, inf
g∈A

|f (x) − g(x)| = 0.

This nearness relation is known in analysis as the topology of pointwise convergence and
provides a geometric intuition to handle analytical problems. There is nometric that induces
this nearness relation. This is not hard at all to prove, but I will reserve this exercise for a
class on countability axioms.

Remark 16. In the same fashion of the metric case, a nearness relation ⋳ on X induces a
closure operator cl⋳ ∶ (X) → (X) which is defined by cl⋳(A) ≔ {x ∈ X ∶ x ⋳ A}
with the following properties:

K1 cl⋳(∅) = ∅;
K2 if A ⊂ cl⋳(A)
K3 cl⋳(A ∪ B) = cl(A) ∪ cl(B);
K4 cl2⋳ = cl⋳.

An operator with these properties is called Kuratowski closure operator, and probably you
already proved in your life that the closure operator associated to a metric space has these
properties. In this case, all come as a very natural consequence of the notion of nearness
relation, for example [N1] implies [K1], [N2] implies [K2], [N3] implies [K3]. Finally [N4]
implies [K4], even if this last one is not completely evident.

Hopefully I convinced you that nearness is a suitable way of providing a set with a
geometric structure. Now we come to the main result of this class, which was motivating
the notion of topology.

Theorem 1.1 (Nearness is topology). There is a bijection between nearness relations on a
set X and topologies on X.

Proof. We define explicitly the correspondence, mapping � ↦⋳� and⋳↦ �⋳. Let � be a
topology onX, we say that x ⋳� A if and only if x ∉

⋃

O⊂Ac O. Now let ⋳ be a nearness
relation, we say that O ∈ �⋳ if and only if cl⋳(Oc) is fixed by cl⋳. The proof that these
two function are one the inverse of the other is not locally trivial and globally technical.
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Let’s prove together that one composition is the identity. We shall prove that � = �⋳� . It
is enough to prove that C is a closed set in � if and only if cl⋳� (C) = C, in fact this is just
a rephrasing of the thesis. To accomplish this task we compute explicitly cl⋳� (C),

cl⋳� (C) = {x ∈ X ∶ x ∉
⋃

O⊂Cc
O}.

Now we observe that when C is closed,
⋃

O⊂Cc O coincides with Cc and thus cl⋳� (C) =
{x ∉ Cc} = C . When cl⋳� (C) = C, C must be closed, because cl⋳� (C) is (by definition)
the complement of a union of open sets. �

Remark 17. The class is over, I hope to have given enough ideas to justify the intuition
behind the notion of topological space, the nearness relation (which is a very natural con-
cept) induced by a topology is described explicitly in the last theorem, but I recommend to
draw some pictures and get used to its geometric meaning. As a side remark, I hope to have
convinced you that the concept itself of geometric entity is evolving within the time and
can be approached from different perspective (metric spaces, nearness relations, topologies,
closure operators, proximity spaces, varieties, manifolds, even topoi or simplicial sets...),
what stays solid in this constant change is our fascination for geometry itself and our need
for a geometric intuition when picturing or facing a problem (think, for example, about
the standard proof of Cauchy Lipschitz theorem invoking the fixed points of the Volterra
operator).

REFERENCES

[1] Vectornaut (https://mathoverflow.net/users/1096/vectornaut), Why is a topology made
up of open sets?, MathOverflow, URL:https://mathoverflow.net/q/19173 (version:
2015-10-23).

[2] user58514, What is the topology of point-wise convergence?, Mathematics Stack Ex-
change, URL:https://math.stackexchange.com/q/293004 (version: 2013-02-02).



1st LESSON 5

2. EXERCISES

The exercises from this group are mandatory.

Ex. 1. Prove that the family of closed sets is closed under arbitrary intersection
and finite union.

Pick a least one exercise from this group.

Ex. 2. How many topologies are there on a set with three elements? How many
non homeomorphic?

Ex. 3 (1). Prove that a function between topological spaces f ∶  →  is
continuous if and only if it preserves the nearness relation induced by the topology.

Ex. 4. Complete the main theorem, showing that ⋳ = ⋳�⋳ .

Pick at least one exercise from this group.

The Book (�).
4.A
4.B
4’2 o
4’3
4’4

Pick at least one exercise from this group.

The Book (�).
4’9 1
4’10
4’11 1

1 useful to deepen your understanding. Take your time to solve it. (May not be
challenging at all.)

o challenging.
� comes from Elementary Topology Problem Textbook, by Viro, Ivanov, Netsve-

taev and Kharlamov.
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