CATEGORY THEORY

IVAN DI LIBERTI

EXERCISES

Leinster (□). 0.13 Leinster (□). 0.14

Leinster (□).	1.1.13
Leinster (□).	1.1.15
Leinster (ID).	1.3.27
Leinster (ID).	1.3.32

Riehl (□). 1.1.iii **Riehl** (□). 1.3.vi

Leinster (**D**). Prove that there is no functor $\operatorname{Grp} \to \operatorname{Ab}$ sending each group *G* to its center.

Leinster (**D**). 1.2.24

Leinster (\Box). 1.3.28. Moreover, show that the assignment $X \mapsto A \times X^A$ is functorial and that (a) provides a natural transformation $A \times (-)^A \Rightarrow (-)$. Provide a similar statement for (b).

Leinster (ID). 1.3.31

Exercise 1 (\square , \square , *G*-sets). A *G*-set is a couple (X, χ_X) where *X* is a set and $\chi : G \times X \to X$ is an action. A morphism of *G*-sets $f : (X, \chi_X) \to (Y, \chi_Y)$ is a *G*-equivariant set function. Show that the category of *G*-sets is equivalent to the category of functors (and natural transformations between them) **Set**^{*G*}, where *G* is regarded as a 1-object category.

Exercise 2 (\square , \square), Quiv). Let ($\cdot \Rightarrow \cdot$) be a category with two objects {a, b}, identities, and two distinct maps $f, g : a \Rightarrow b$. Let Quiv be the category of quivers and morphisms between them. Show that:

Quiv \simeq Set^{$(\cdot \Rightarrow \cdot)}.</sup>$

Date: October 4, 2020.

Exercise 3 (**D**). Show that \mathcal{K} has a faithful and conservative functor $U : \mathcal{K} \to \mathbf{Set}$ if and only if it has a faithful functor $V : \mathcal{K} \to \mathbf{Set}$ and a conservative functor $Z : \mathcal{K} \to \mathbf{Set}$.

Exercise 4 (**D**). Show that if \mathcal{K} has a faithful functor $\mathcal{K} \to \mathbf{Set}$, so does its opposite category \mathcal{K}° .

Exercise 5 (\blacksquare). Show that every small category *C* has a faithful functor $C \rightarrow$ **Set**. Why the same argument does not work for a locally small category?

The riddle of the week (\square , \blacktriangle). Show that every locally finite category \mathcal{K} has a conservative functor into the category of finite sets $\mathcal{K} \to Fin$.

- the exercises in the red group are mandatory.
- pick at least one exercise from each of the yellow groups.
- pick at least two exercises from each of the blue groups.
- nothing is mandatory in the brown box.
- The riddle of the week. It's just there to let you think about it. It is not a mandatory exercise, nor it counts for your evaluation. Yet, it has a lot to teach.
- useful to deepen your understanding. Take your time to solve it. (May not be challenging at all.)
- measures the difficulty of the exercise. Note that a technically easy exercise is still very important for the foundations of your knowledge.

A It's just too hard.

The label **Leinster** refers to the book **Basic Category Theory**, by *Leinster*. The label **Riehl** refers to the book **Category Theory in context**, by *Riehl*.

2