

Equilisers
Equilisers
Ex1 in set, equilisers is equilibriants,
products and infinitory equilibriant.

$$X \xrightarrow{S_4} J_2$$
.
Ex2 in top
Ex3 kernel of a hono
karf -> A $\xrightarrow{S_4} B$
 $\xrightarrow{S_4} B$
Ex4 Eq(s,t) \cong Ker(s-t) in Vect.

Example Description of limits in St.
Lind
$$\cong$$
 let $(4, lim D)$
¹ \longrightarrow lind \cong ferres on D with vartex 1 f
 \cong formes on D with vartex 1 f
 $=$ for

$$\frac{\text{Ann Buylte (=) products b equilitarys}}{\text{Ann Buylte (=) products b equilitarys}}$$

$$\frac{\text{Ann B}}{(=) ide Al bost in set the forme we gave is closerly and the forme we gave is closerly and the forme of the source of the source of equilitary for a forme of equilitary of equilitary to a forme of equilitary to a forme of equilitary to a forme of the source of the$$

Colinits Pf Colinit. Opposite cityory. Row A notational disperter Line Coline Coline Line Coline Line Coline Line Coline Line Coline Line Coline Coline Line Coline Coline Line Coline Coli

CATEGORY THEORY

IVAN DI LIBERTI

EXERCISES

Leinster (\square , \square). 5.1.39 Exercise 1 (\square , \blacksquare). The identity functor of a category $\mathbb{1}_C : C \to C$ is a diagram. If it exists, can you describe its limits? And what about its colimit?
Leinster (□). 5.1.33 Leinster (□). 5.1.34 Leinster (□). 5.1.35 Leinster (□). 5.1.42 Exercise 2 (□). Show that a conservative functor preserving equalizers is also faithful.
Leinster (□). 5.2.21 Leinster (□). 5.2.23 Leinster (□, □). 5.2.24 Leinster (□, □). 5.2.25 Leinster (□, □). 5.2.26
Leinster (). 5.3.8 Leinster (,). 5.3.9 Leinster (,). 5.3.13
Riehl (□). 3.1.i Riehl (□). 3.1.ii Riehl (□). 3.1.iii Riehl (□). 3.5.i

Date: October 12, 2020.

IVAN DI LIBERTI

- the exercises in the red group are mandatory.
- pick at least one exercise from each of the yellow groups.
- pick at least two exercises from each of the blue groups.
- nothing is mandatory in the brown box.
- The riddle of the week. It's just there to let you think about it. It is not a mandatory exercise, nor it counts for your evaluation. Yet, it has a lot to teach.
- useful to deepen your understanding. Take your time to solve it. (May not be challenging at all.)
- measures the difficulty of the exercise. Note that a technically easy exercise is still very important for the foundations of your knowledge.
- **A** It's just too hard.

The label **Leinster** refers to the book **Basic Category Theory**, by *Leinster*. The label **Riehl** refers to the book **Category Theory in context**, by *Riehl*.

2