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Perhaps the purpose of categorical

algebra is to show that which is

trivial is trivially trivial.

J.P. Freyd

1. Definitions, basic constructions and properties

1.1. Characters. Let us introduce the main character of this play: posets and

morphisms between them. �e intense study of their property and interactions

we be our toy model for category theory.

De�nition 1.1.1 (Category). A poset C = (C, ≤) is a set C equipped with a re�ex-

ive, antisymmetric and transitive relation.

Remark 1.1.2 (A dip in the analogy). Since this is the �rst time that we use

the analogy between posets and categories on which this chapter is built, let us

remind what is the connection between the two structures. �e elements of the

posets should look like objects of a category, while the relation should carry the

data about the arrows, for example the compositionality of the arrows is encoded

in the transitivity of the relation. �e experienced reader knows that this analogy

can lead to the observation that every poset is a category in a natural way, built

making formal the recipe we just described, the subtle abuse of this chapter will

be to push the reader in treating any category as it was a poset.

De�nition 1.1.3 (Functor). A morphism of posets f ∶ C → D is a set function

preserving the poset structure. �is means that if a ≤ b, then f (a) ≤ f (b).
1
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1.2. Constructions. In order to proceed with the next sections, we need to col-

lect and perform some constructions with posets. �is subsection is dedicated to

exploring these basic constructions. �is is far from being a complete exposition

of all the possible constructions that can be performed with posets, it’s just a list

of those that we need and we �nd signi�cant enough.

De�nition 1.2.1 (Opposite category). Given a poset C one can always de�ne the

opposite poset C◦
. �e elements of C◦

are the same of the elements of C, while the
order relation is de�ned by the following rule c ≤C◦ d if and only if d ≤C c.

Remark 1.2.2. Observe that even if the opposite C◦
has the same elements, it is

incredibly far from being the same posets, in fact self dual posets are incredibly

rare. Could you name one?

De�nition 1.2.3 (Product of categories). Given two posets C,D one can de�ne

the product of posets C × D as the cartesian product of the underlying sets C × D
equipped with the pointwise order relation induced by C and D.

Remark 1.2.4 (Cat is complete and cocomplete). For the reader which is ac-

quainted with a tiny bit of category theory already, the product C×D constructed

in this way has the universal property of the product in the category of posets,

moreover many limits and colimits can be constructed in a similar manner. �is

would amount to show that the category of posets is complete and cocomplete.

Since it is not the aim of this note, especially to check this property in detail, the

reader can check this on his/her own or consult any standard reference.

De�nition 1.2.5 (Functor categories). Given two posets C,D, the set of mor-

phisms of posets Pos(C,D) admits a natural structure of poset which is given by

the codomain.

f ≤ g i� for all c ∈ C, f (c) ≤ g(c).

�is means that Pos(C,D) is itself an object of the category of posets. �is spots

a very relevant feature of the internal logic of the category of posets, we will see

how this will play a central role later. We will address to this set, equipped with

this structure as the internal hom.

Remark 1.2.6 (Two words on the internal logic). At this stage it is not easy to

provide a de�nition for the idiom internal logic. In a nutshell the internal logic

of a category is the family of those external constructions that can be performed

inside the category. An external construction is o�en incarnated by a presheaf,

thus one could say that the construction can be internalized if the presheaf is

representable, i.e. there exists an object expressing the universal property of the

construction. Limits, colimits, subobject classi�ers, internal homs, are instances

of this pa�ern. Let us try to motivate at least with an example the la�er statement,

given a family of objects ci in a category C, the universal property of the product

∏i ci is syintetized in the following equation:

C(a,∏
i
ci) ≅ ∏

i
C(a, ci),

this means that the object ∏i ci represents internally the external construction

encoded by the presheaf ∏i C(−, ci) ∶ C◦ → Set. In this sense, for Set-enriched

categories, presheaves provide the free semantics for universals.
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1.3. Properties.

Remark 1.3.1 (Cartesian closedness). It is absolutely well known that in basic

aritmetics the following equation holds,

5(2×3) = (52)3

Recalling that 52 is the cardinality of the set of functions Set(2, 5), one can recover

the previous equation from a very important property of the category of sets,

namely that there is an isomorphism (bijection),

Set(A × B,C)
1

≅ Set(A, Set(B,C)).

In functional programming this phenomenon is called Currying, a�er Haskell

Curry, while in categorical terms this is called cartesian closedness of the category

of sets. �e bijection is de�ned in a very simple way, it maps

f ( , ) ↦ (a ↦ f (a, )).

Being cartesian closed is not such a common property, for example the category

of groups is not cartesian closed, idem for the category of topological spaces. In

fact the possibility of having an internal notion of the set of functions show how

expressive the internal logic of the category is. �e category of posets Pos is smart
enough to have this property, using the order de�ned in the De�nition 1.2.5. �is

means that the following equation holds.

Pos(C × D,E) ≅ Pos(C, Pos(D,E))

�e bijection is identical to the one provided in this remark for the category of

sets and is in fact just a restriction of it. Moreover, it is not only a bijection of sets,

it is also an isomorphism of posets.

2. Truth values and presheaf construction

In this section we introduce the poset of truth values T. In our analogy this

poset replaces the role that the category of sets has among categories,

T ∶ Pos = Set ∶ Cat.

We show that T somehow controls the whole category of posets in the same way

that the category of sets plays a central role among categories. �is exceptional

property is encoded by a posetal version of the Yoneda embedding, which we will

reduce to the standard representation set C its powerset 2C via bump functions.

2.1. �e enrichment.

De�nition 2.1.1 (�e category of sets). We de�ne the poset of truth values T
to be the poset with two elements and the only possible non trivial inequality

between the two,

T ∶= {0 < 1}.

1
�is shows that the presheaf Set(− × B,C) ∶ Set◦ → Set is indeed representable and coincides

with Set(−,CB).
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Remark 2.1.2 (Truth values and 2). Among logicians, this is known as the poset

of truth values, because 0 can be identi�ed with false and 1 can be identi�ed with

true and plays an evident role in the theory boolean algebras. It could also be

identi�ed with the Sierpinski space. A possible shortname for the same object

might also be 2, which is the cardinality of its underlying set, this probably is the

best intuition for this short note and we recommend to maintain it. We avoid this

notation because it would be indistinguishable from the poset with two elements

and no relation between them.

Remark 2.1.3 (Categories are enriched over sets). Given a poset C, recall that its
posetal relation (≤) is by de�nition a subset of the cartesian product ≤ ⊂ C × C . It
is well known that, in the category of sets, subsets are classi�ed by functions into

the set with two elements,

�(−) ∶ Sub(C × C) � Set(C × C, 2) ∶ (−)−1(1).

�e correspondence maps a subset S ⊂ C × C into its characteristic function �S ,
while in the opposite direction maps a function to the counter image of 1. As a
result of this construction, we can study the characteristic function associated to

the (partial) order relation ⟨−, −⟩ ∶= �≤.

⟨−, −⟩ ∶ C × C → 2

(c, d) ↦

{
1 if c ≤ d
0 if not.

�is parining is just another way to encode the partial oder and can be trans-

formed into a morphism of poset by equipping 2 with the correct structure of

poset,

⟨−, −⟩ ∶ C◦ × C → T.
Notice that the opposite on the le� side of the product is needed in order to

make this function into a morphism of posets, otherwise it would not be, in fact

the function inverts the order in the �rst component.

2.2. �e presheaf construction.

De�nition 2.2.1 (�e presheaf construction). Given a poset C we will call the

poset
2 Pos(C◦,T) the power poset of C and indicate it via the notation P(C).

Remark 2.2.2 (�eYoneda embedding). Given a posetC, we can use the Currying
phenomenon to �nd a morphism of posets from the natural pairing associated to

the poset structure as indicated below

よC ∶ C → P(C)

c ↦ ⟨−, c⟩.

Remark 2.2.3 (Bump functions). Allowing ourselves to be sloppy and identifying
for a moment P(C) with 2C , the Yoneda embedding sends every element c to a

kind of bump functionよc, which is 0 anywhere but on the element c itself. Since
we need to take into account the structure of poset, the bump function is molli�ed

and is thus non-zero on a bigger set. �e following lemma shows technically what

2
Equipped with the order de�ned in De�nition 1.2.5.
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we have hinted in this remark, a morphism f ∶ C◦ → T does not vanish on an

element c i� it is bigger than its associated bump functionよc.

Lemma 2.2.4 (Yoneda Lemma).
よc ≤ f i� f (c) = 1

Proof. We organize the proof proving the two implications separately.

⇒) よc ≤ f means that, for every d ∈ C, when ⟨d, c⟩ = 1 also f (d) = 1. Now,
by de�nition ⟨c, c⟩ = 1, because c ≤ c, thus f (c) must be 1.

⇐) Since f (c) = 1, for every element d ≤ c, f (d) = 1, because f must (anti-

)preserve the order relation of C. Sinceよc is 0 elsewhere, this is enough
to show thatよc ≤ f .

�

Remark 2.2.5 (Presheaves are complete and cocomplete). �e posetP(C) inher-
its supremum and meets

3
from T, this means that given any family of functions

F = {fi}i∈I one can de�ne both the supremum and the in�mum of the family in

the following way.

(supF)(c) = sup
fi∈F

fi(c).

Remark 2.2.6 (Representables are tiny). In the spirit of Rem. 2.2.3 and the Yoneda

Lemma 2.2.4, we can observe that a bump function よc is an atom among the

elements of P(C). To make evident its undivisidibiliy, imagine thatよc = sup fi ,
then we show that it must coincide with one of functions in the supremum. Since

each fi is smaller than the supremum, we already know that fi ≤ よc, thus it is
enough to show that there must be an i such thatよc ≤ fi . Obviously there must

be an i such that fi(c) = 1, but then by applying the Yoneda lemma 2.2.4,よc ≤ fi ,
which is the thesis.

In the following corollary we observe that collecting the all the bump func-

tions below f one can recover f itself. For graphical reasons, we indicate with the

centerdot the meet.

Corollary 2.2.7 (Ninja Yoneda Lemma/Representables are dense among presheaves).

f = sup
c ∈C

(f ⋅よc).

Proof. Using the Yoneda Lemma 2.2.4 its very simple to show that the two func-

tions have the same values. �

Remark 2.2.8 (�e correct notion of powerset). It is probably already evident to

the reader, but let us stress the anology between the powerposet and the pow-

erset. P(C) is the correct notion of 2C in the category of posets. �e rest of this

subsection is dedicated to enhance the correspondence

�(−) ∶ Sub(C) � Set(C, 2) ∶ (−)−1(1),
in the context of posets. In order to do so we need to introduce the correct notion

of subset and study more closely our powerposet construction.

3
Arbitrary suprema and suprema are interchangeable terms, idem for arbitrary meets and

in�ma.
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2.2.1. Lower sets and the Cantor embedding.

De�nition 2.2.9 (Discrete op�bration). Let C be a poset. An lower I ⊂ C is an

downward closed subset, i.e. if i ∈ i and i ≥ i′, then i′ ∈ I. �e set of lower sets

Low(C) of a poset C is itself a poset ordered by inclusion.

Remark 2.2.10 (�e Cantor embedding). Given a poset C, we can construct a

morphism of posets �C ∶ C → Low(C) which sends an elements c to the lower set
(c) generated by c. �is construction is evidently a variant of the trivial inclusion

of a set in the set of its subsets, using singletons. �is motivates the name that we

have chosen.

2.2.2. �e Grothendieck construction.

Remark 2.2.11. We have now introduced enough elements to picture the main

diagram of this section and state our version of what’s known under the name of

Grothendieck construction. In the notation of diagram below,

C

P(C) Low(C)

よC
�C

(よ/−)

�(−)

we will show that there exist that correspondence in the lower level of the dia-

gram and is indeed an isomorphism of posets. Moreover, the diagram commute,

this give us a conceptual representation for the Yoneda embedding, which coin-

cides, up to isomorphism of posets to the Cantor embedding, associating to every

element its naturally associated lower set,

�C (−) = (よ/よ(−)).

Also, we fully recover our bump function intuition over the Yoneda embedding,

in fact it can be built via the characteristic function construction,

よC(−) = ��C(−).

Proposition 2.2.12 (�e Grothendieck construction). �ere exists an isomor-

phism of posets as indicated below.

�(−) ∶ Low(C) � P(C) ∶ (よ/−)

Proof. We split the proof in parts, we show the existence of the two morphism

separately. �e fact that they are one the inverse of the other is more or less a

tautology.

�(−) maps a lower set I to the characteristic function �I,

c ↦

{
1 if c ∈ I

0 if not.

�I is a morphism of posets because I is a lower set, this prevents �I to not
preserve the poset relation.
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(よ/−) �e reader has probably guessed the construction of (よ/−) and indeed

the following is not the most concise way to present it, yet let us give

this precise construction because this is the one that can be generalized

to di�erent contexts. Given an element f ∈ P(C) we can individuate it as

a morphism ⌊f ⌋ ∶ 1 → P(C) which is pointing towards f . We might call

⌊f ⌋ the name of f . Now de�ne (よ/f ) as a of lax pullback
4
of the following

diagram.

(よ/f ) ∶= {c ∈ C ∶よ(c) ≤ f }5

(よ/f ) C

1 P(C)

よ

⌊f ⌋

By the Yoneda lemma 2.2.4 (よ/f ) coincides with f −1(1), which is prob-

ably the construction that the reader has guessed at the beginning of the

proof.

�

2.2.3. Functoriality of the presheaf construction.

Remark 2.2.13. Let’s go back for one moment to sets and functions, where our

intuition is solid and trustable. Given any (set) function f ∶ A→ B there are two

very naturally induced functions between their powersets.

A B

Sub(A) Sub(B)

�A

f

�Bf!

f −1

f! is o�en called direct image and maps a subset S ⊂ A to the the subset of

its images

S ↦ ⋃
s∈S

f (s).

f −1 is o�en called the inverse image and maps a subset S ⊂ B to the the subset

of its pre-images images

S ↦ f −1(S).

Both these maps have interesting descriptions also in terms of bump functions,

in that case for example the inverse image correspondes to the precomposition

with f , for this reason it is very o�en indicated with f ∗.

Remark 2.2.14. It is not at all surprising that this construction generalizes triv-

ially to the case of posets when subsets are replaced by lower sets. �is leads us

to the following diagram.

4
�is terminology must be intended in an informal sense, (よ/f ) is not the pullback of that

diagram, it is a very loose notion of pullback.

5
Notice that the pullback would have been (よ/f ) ∶= {c ∈ C ∶ よ(c) = f }. �at’s the sense in

which the pullback is only lax.
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C D

Low(C) Low(D)

P(C) P(D)

f

よC

�C �D

よD

f!

�(−)

f −1

�(−)

P!f

P∗f

�e do�ed maps are thus de�ned by composition in the only possible way

provided the elements that we have,

P!f = �(−) ◦ f! ◦ (よ/−).

P∗f = (よ/−) ◦ f −1 ◦ �(−).

We advice the reader to maintein the intuition provided by the action of these

constructions over the lower sets and keep in mind thatP∗f has a simple descrip-

tion in terms of precomposition.

P∗f (−) = (−)◦f .

We encourage the reader to check explicitely that these two de�nition of P∗f are
in fact completely equivalent, this exercise is perfect to built the intuition.

Remark 2.2.15 (�e Yoneda structure on Cat). Going back to our prolegomena

to the functoriality of the presheaf construction, Rem. 2.2.13, Given any (set)

function f ∶ A → B there are two very naturally induced functions between

their powersets.

A B A B

Sub(A) Sub(B) Sub(A)

�A

f

�B �A

f

f −1
f!

f −1

In particular this provides us with a very weak notion of inverse B → Sub(A),
as indicated on the right dide of the diagram above. Following Rem. 2.2.14, we

can �nd a very similar construction also for posets.
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C D

C D

Low(C) Low(D)

P(C)

P(C) P(D)

f

よC

�C �D

よD よC

f

⟨f ,−⟩f∗

�(−)

f −1

�(−)

P∗(f )

P∗f

We de�ne ⟨f , −⟩ to be the compositionP∗f ◦よC, this de�nition is coherent with

the chosen notation, as P∗f ◦よ(c) is by de�nitionよc ◦ f .

2.3. Cocomplete categories & algebras for the presheaf construction. �is

subsection studies a very important relation between the existence of suprema

and the powerposet construction. In particular we will show that a poset has

suprema if and only if the Yoneda embedding is a retract,

よC ∶ C � P(C) ∶ IntC.

Remark 2.3.1. �e notation IntC stands for internalization and was somehow

motivated by the Rem. 1.2.6 in the case of presheaf categories. �e same intuition

would appear a bit arti�cial in the case of posets, thus we will not try to motivate

it. �e construction associates to a function C◦ → T the closest approximation of

f among bump functions.

Remark 2.3.2. Recall that C has suprema if, given any family of ci ∈ C, there ex-
ists a common upper bound supci , and moreover this upperbound is initial among

upperbounds for the family. In a similar manner, one can de�ne the notion of

supremum of a morphism f ∶ D → C and its very easy to say that a poset has

suprema if and only if it has suprema for every morphism of posets.

Proposition 2.3.3 (Cocomplete categories are algebras for the presheaf construc-

tion). If C has suprema, thenよ ∶ C → P(C) is a retract.

Proof. �e proof is incredibly easy, observe that the inclusion of a lower set I ⊂ C
gives a morphism of posets, this means that when C has suprema there exists a

morphism of posets

sup ∶ Low(C) → C.
Now we use this morphism to build the desired retraction as indicated by the

diagram below.

P(C) C

Low(C)

(よ/−)

IntC

sup
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�e Yoneda Lemma 2.2.4, together with the proof of Grothendieck construction

2.2.12 allows us to provide an explicit formula to cumputer this retraction.

IntC(f ) = sup
c∈f −1(1)

c

Via this formula it is completely evident that the composition IntC◦よC equals the

identity of C, as show by the following equation.

(IntC◦よ)(c) = sup
d∈よc−1(1)

d = c.

�e last equality in the previous euqtion is true because c is by de�nition terminal

(is the greatest) among those elements on whichよc does not vanish. �

Remark 2.3.4 (A strategy for the converse). At this point we would like to show
also the other implication on the previous statement. In order to do so we proceed

in two steps.

(1) �e comprehensive factorization system/Suprema of lower sets are enogh.
For every morphism f ∶ D → C, there exists a lower set If ⊂ C and a

factorization

D D

If

f

pf if

such that the sumpremum sup f exists if and only if sup if exists and in

this case they coincide.

(2) if some retraction exists, then suprema of lower sets exist too.

Pu�ing toghether this two steps one has shown that: a retraction exists

2
⇒ suprema

of lower sets exist

1
⇒ suprema exist, and thuswe have the converse of the previous

theorem.

Proof of 2.3.4(1). �is is relatively easy to check, de�ne If to be the lower set gen-
erated by the image of f , since we are just adding elements below the image, the

supremum does not change at all. �

Proof of 2.3.4(2). Assume that there exist some retraction r ∶ P(C) → C. Now,
using the Ninja Yoneda lemma 2.2.7, we have that

r = sup
d∈C

(r ⋅よc) = sup
d∈r(−)−1(1)

よc.

�e last formula to compute r shows that r must preserve suprema. But if r pre-
serves suprema, then its easy to show that it must coincide with the function

computing the supremum of the associated lower set, thus suprema of lower sets

exist. �

Corollary 2.3.5 (Algebras for the presheaf construction are cocomplete cate-

gories).

Proof. Evident from Rem. 2.3.4. �

Proposition 2.3.6 (Universal property of the presheaf construction). . �e pow-

erposet is universal among the completion under suprema. I.e. given any poset D
with suprema, and a morphism of posets C → D,
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C D

P(C)

f

よC
lanよ f

there exists a suprema-preserving extension lanよ f ∶ P(C) → D of f along

the Yoneda embedding.

Proof. Pu�ing together Prop. 2.3.3 and Rem. 2.2.14, the construction of lanよ f is
somehow the only possible one.

C D

P(C) P(D)

f

よC

P!f

IntD◦P!f IntD

Now we need to show that lanよ f de�ned in this way extends f along the Yoneda
embedding, which means that we must check that IntD ◦ P!f ◦ よC = f , now
this is just a ma�er of writing everything explicitely. It is easy to check from

the de�nitions that P!f ◦ よC = よD ◦ f , and thus we get IntD ◦ P!f ◦ よC =
IntD ◦よD ◦ f = f . Finally the extension preserves suprema because both P!f and
IntD do so. �

Remark 2.3.7. We can give an operative description of the action of lanよ f .
Given an element g ∈ P(C), we write it using the Ninja Yoneda Lemma 2.2.7

as the supremum of its nontrivial bump functions g = supc∈g−1(1)よc, then we

de�ne lanよ f by supremum preserving extension

lanよ f (g) = sup
c∈g−1(1)

f (c).

One can check that this is precisely what is happening in the proof above.
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