

Adjunctions.  
In previous licture we were not completely  
happy with our def of adj.  

$$M_{\pm} = 1 \implies B : R$$
  
 $\eta : \eta \implies RL$  (unit)  
 $g : \eta \iff LR$ . (count)  
 $t = 0 \implies 0$ 

bood definition, but we had  
mother intuition.  

$$B(L(a), b) = A(a, Rb)$$
.  
We can now turn this mb  
a definition.  
For an edji L + R er obore, we  
define  
 $A^{op} \times B \longrightarrow Set$   
 $a, b \longmapsto B(L(w), b)$ .

ه)

this is a function because it is  

$$A^{P} \times B \xrightarrow{L^{\infty} id} B^{0} \times B \xrightarrow{B(-,-)} fet$$
  
 $B(L-,-)-$   
finilarly define  
 $A^{P} \times B \xrightarrow{Q} fet$   
 $(a, b) \xrightarrow{L^{\infty}} sf(a, Rb)$   
this is eyon a functor.  
 $A^{P} \times B \xrightarrow{Id^{\infty} R} A^{\infty} \times A \xrightarrow{A(-,-)} fet$   
 $A(-, R-)$   
 $D_{eff} \xrightarrow{L: A \xrightarrow{Q} B : R ere}$   
 $edjort eff thre exists
a netural isomorphism
 $Q: B(L-,-) \xrightarrow{\cong} f(-, R-).$$ 

No we see how to be the opposite 
$$q \sim \begin{pmatrix} h \\ e \end{pmatrix}$$
.

Nothing more easy.  

$$y: 1 \longrightarrow RL.$$
  
 $y: f(-, RL).$   
 $b(L-, L-) \cong d(-, RL-)$   
 $h(-, RL).$   
 $b(L-, L-) \cong d(-, RL-)$   
 $h(-, RL).$   
 $b(L-, L-) \cong d(-, RL-)$ 

Le 1 he a cotegory with all limits and colimits. He will show the (b  $\mathcal{A}(\mathbf{e}, -) : \mathcal{A} \longrightarrow \text{fet}$ preserve ell limits-For example, in the ase of products, X(a, Tbi) = TX(a, bi). but this is precisely the universe property of the product!

the some organizat works in general.  
The property of prevening limits is prevent  
the norm of deiny a limit.  
Like 
$$d(a, b_i) \longrightarrow T(a, b_i)$$
  
 $\times$  is a coherent form  $f_i$  of orrows  
 $x_i \in A(a, b_i)$  that ' consists withe  
the diagram!  
 $a \longrightarrow b_2$   
 $b_3 \longrightarrow b_2$   
this correspond 1 cos 1 to maps  
when the limit!  
 $a \longrightarrow b_2$   
 $a \longrightarrow b_2$   
 $a \longrightarrow b_2$   
 $b \longrightarrow b_2$ 

of course the same is true for  $\mathcal{A}(-,b): \mathcal{A}^{\circ p} \longrightarrow \text{fet}.$ 

(c)

Right exponts preserve lints- $\mathcal{A}(-, \mathcal{R}(\mathcal{L}, \mathcal{D})) \cong \mathcal{B}(\mathcal{L}, \mathcal{L})$ lin B(L-, ₽) By Youde 115 Rlind 2 lin RD lem B(-, RD)NS  $\mathcal{A}(-, h \in \mathbb{RD})$ .

9

Limits and adjunctions Soy the d has all limits of shope I. tor example, set has all products. Set (3x(-) US Set x Set \_\_\_\_\_ Set (a, b) + \_\_\_\_ axb



$$\Delta : \mathcal{A} \xleftarrow{} \mathcal{A}^{\mathsf{v}} : \mathfrak{lm}$$

$$\mathcal{A}^{\mathsf{v}} (\Lambda \mathfrak{a}, \mathcal{F}) \cong \mathcal{A} (\mathfrak{a}, \mathfrak{lm}^{\mathsf{t}})$$

$$\stackrel{! }{\underset{\mathsf{Bre} \neq \mathsf{vartex}}{} \mathfrak{a} :$$

As precise theorem 
$$D$$
 the following.  
Let  $I \xrightarrow{F} A$  be a diagram. And  
for each  $d \, bD$  consider  $f_j: I \longrightarrow A$   
 $(-) \longrightarrow F(-)(d)$ .  
then if all but j exist, then  
 $lim F exist and lim f(d) = lim f_j$ .

## **CATEGORY THEORY**

## IVAN DI LIBERTI

| EXERCISES |
|-----------|
|-----------|

Leinster (
). 6.2.20
Leinster (
). 6.2.21
Leinster (
). 6.3.21(a)
Leinster (
). 6.3.22
Leinster (
). 6.3.26
Leinster (
). 6.3.27

- the exercises in the red group are mandatory.
- pick at least one exercise from each of the yellow groups.
- pick at least two exercises from each of the blue groups.
- nothing is mandatory in the brown box.
- The riddle of the week. It's just there to let you think about it. It is not a mandatory exercise, nor it counts for your evaluation. Yet, it has a lot to teach.
- useful to deepen your understanding. Take your time to solve it. (May not be challenging at all.)

measures the difficulty of the exercise. Note that a technically easy exercise is still very important for the foundations of your knowledge.

**A** It's just too hard.

The label **Leinster** refers to the book **Basic Category Theory**, by *Leinster*. The label **Riehl** refers to the book **Category Theory in context**, by *Riehl*.

Date: November 10, 2020.