

(1) Monads and closure operators.

Def A menad T on a poset is an embfunctor T: P -> P	s.t.
1) $p \leq T_p$	
2) Tp ≤ Tp	

hull that a clower
gereber in topology is.
The dust is any enter per V
see here:

$$k_{1} = k_{1} = k_{2} =$$

 $\frac{\mathbb{R}_{i}}{\mathbb{R}_{i}} \xrightarrow{Alg(T)} \xrightarrow{i} \mathbb{P}$

Prop the inclusion has a
left adjoint.
el:
$$P$$
 \longrightarrow $Af_{g}(T): i$
 $\frac{Proof}{Af_{g}(T)(cl_{X}, y)} \cong P(x, iy)$
 $cl_{X} \leq y \leq X \leq y$
 $(=) obv$
 $(=) x \leq y \Rightarrow cl_{X} \leq d(y)$ d_{gabre}
 y

$$\frac{1}{1 + 1} \frac{1}{1 + 1} \frac{1}$$

(2) Kon extensions.
Soy that we want to solve
on extension problem.
A
$$\stackrel{+}{\longrightarrow} C$$

if $\stackrel{+}{\longrightarrow} C$
Problems $\stackrel{+}{\longrightarrow} C$
if $\stackrel{+}{\longrightarrow} C$
Problems $\stackrel{+}{\longrightarrow} C$
if $\stackrel{+}{\longrightarrow} C$
Problems $\stackrel{+}{\longrightarrow} C$
if \stackrel

In fact, if it exist

$$i\int_{P}^{P} = Alg(rowi).$$