

1 Monados (& elomre genetors). Det A multiple on a posit P is en emberganets T: P \rightarrow P such that 1) $P \leq Tp \qquad 1 \leq t$

2)
$$Tp \ll 1p - T + 3T$$

 $Pmk T^{2} = T$
 $t) \Rightarrow Tp \ll Tp$.
 $2) \Rightarrow T^{2} = T$.
Rick The original name was
 $Bright (T, Y, Y)$.
Examp X is a typological spece
 $d: 900 \rightarrow 900$. (300, C).
 $findbrickty \cdot X = d(X) = d(X) = d(Y)$.
 $findbrickty \cdot X = d(X) = d(X) = d(Y)$.
 $findbrickty \cdot U = d(X) = d(Y) = d(Y) = d(Y)$.
 $findbrickty = d(X) = d(X) = d(Y)$.
 $findbrickty = d(X) = d(X) = d(Y)$.
 $findbrickty = d(X) = d(X) = d(Y)$.
 $findbrickty = d(X) = d(Y) = d(Y) = d(Y)$.
 $findbrickty = d(X) = d(Y) = d(Y) = d(Y)$.

Thomad s

Def An elgebre for a monoid T
on a port P is an element
$$p$$
 such that
 $T_p \leq p - + existence -$

$$\frac{Proof}{p \leq Tp} \quad (1) \text{ Axium of multiple} \\ 1 \text{ In } \\ p \\ Tp = p -$$

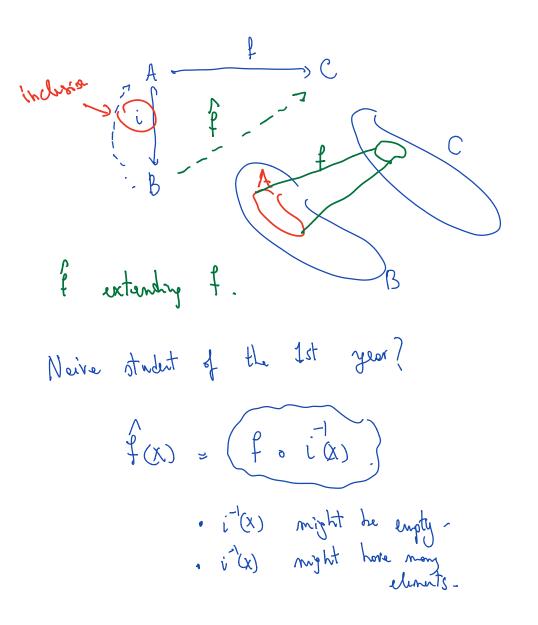
Prop the inclusion
$$Alg(T) \subseteq U \neq P$$

elsepis has a lift adjoint.
("T": $P \equiv Alg(T) : i$.
Proof
 $\frac{Alg(T)(Tx, y)}{Alg(T) : i} \geq P(x, iy) -$
 $dx \leq y \leq x \leq iy$
 $\Rightarrow ebv. x \leq dx \leq y$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx \leq R(y)$
 $f = x \leq iy \Rightarrow dx = R(y)$

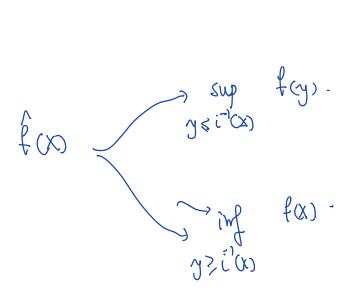
Runk "
$$Cl(X) \longrightarrow P(X)$$

 $Closed sets are "elosed" under
 $orbitrary$ intersection.
is an instance of i: $Alg(T) \longrightarrow P$
preserve el limits.
 $T: P \longrightarrow P$
 $P \lesssim Tp$
 $T_p \lesssim p$
 $P'(-)P_-$$

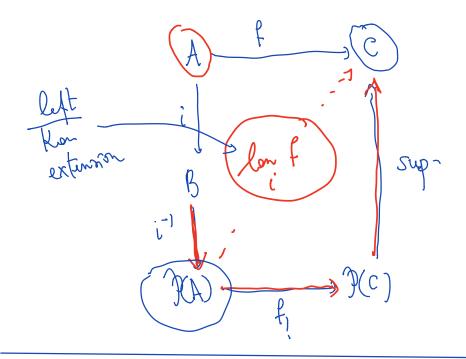
Kor extentions



C is a conflite post.



What did were do?



 $\frac{Rum}{i} = \sup_{i} \circ P_{i}(f) \circ i^{-1}$ ~) rom f = mfr

n

Parati non withtheh

Concrete Company ,

