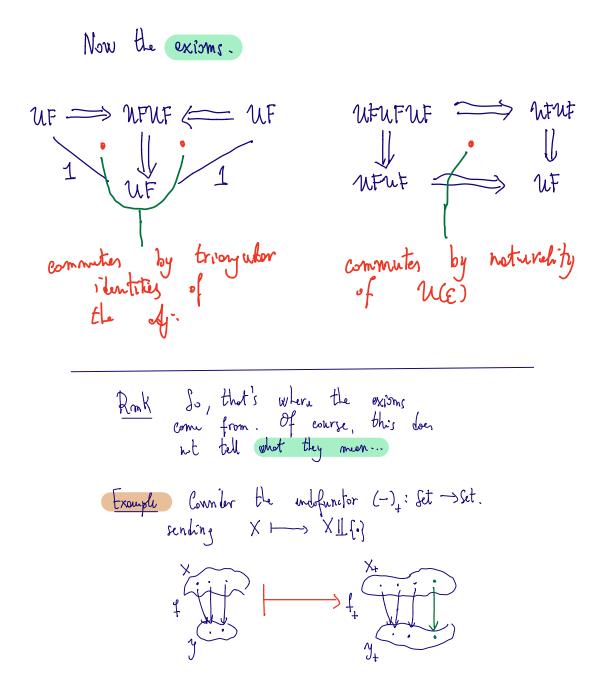
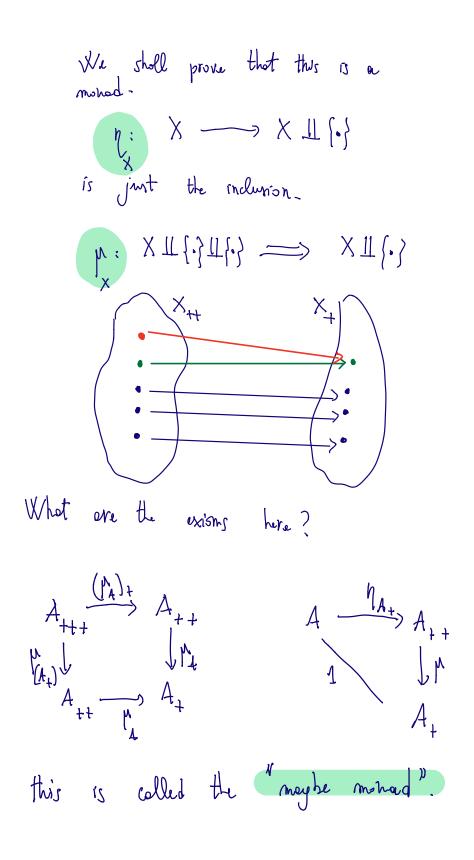


Mondos, the full story. Det A monad on a category C is the data of (T, γ, μ) where. $T: C \longrightarrow C$ is an endefundor $\gamma: 1 \implies T$ is a nature trons $\gamma: T^2 \implies T$ is a nature trons $p: T^2 \implies T$ is a not trons such that the diagrams below commute. $T^3 \xrightarrow{T_0} T^2 \qquad T \xrightarrow{T_1} T \xrightarrow{T_1} T \xrightarrow{T_1} T \xrightarrow{T_1} T \xrightarrow{T_1} T \xrightarrow{T_1}$

Lemme
$$C \xrightarrow{F} D \quad \mathcal{E}: \mathcal{F} H \Rightarrow 1_{\mathcal{C}} (\gamma; 1_{\mathcal{D}} \Rightarrow \mathcal{U}F)$$

induces a monod on D given by
 $UF = T: D \longrightarrow D$
 $Proof$ We reed to find
 $(\gamma) \ 1 \Longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to$
 $(\gamma) \ T^2 \longrightarrow T$ $f + existent to the existence of the second to t$

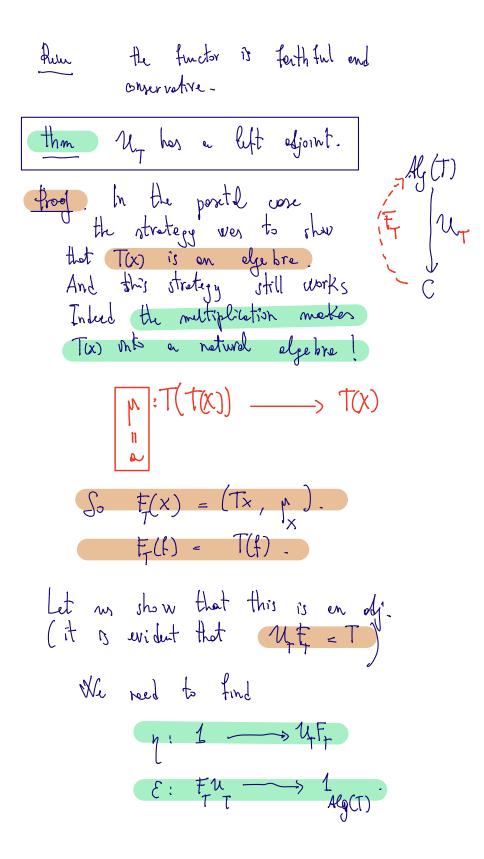


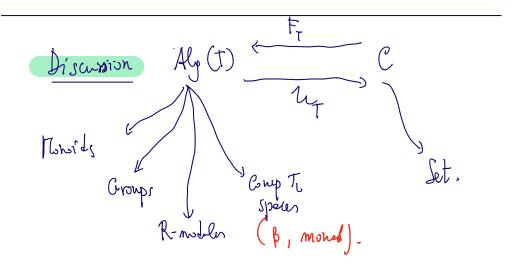


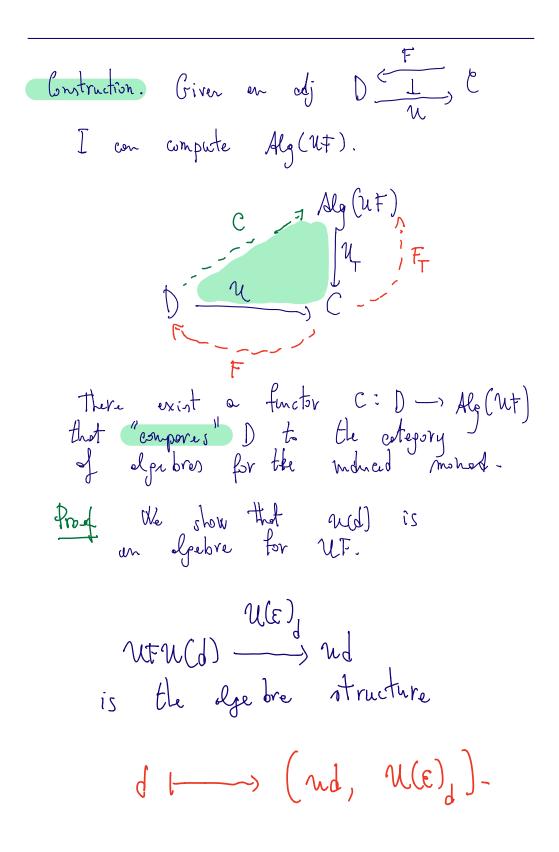
Example Consider the functor
$$R(J)$$
: $St \longrightarrow St$
 $X \longmapsto R[X]$
 $R[X] = \begin{cases} I r_i x_i & r_i \in R_j \end{cases}$
 $R is a Jue one way and to the moment
ring. Jue one way and to the moment
ring. $R = IK$, a field,
where this given the free vector
apace.
this is a monend.
 $I \stackrel{i}{} X \longrightarrow RXI$
 $is just the unchanon
"m the bose".
 $R[R[X] \longrightarrow R(X)$
 $I \stackrel{i}{} X \stackrel{i}{} C(T) \stackrel{i}{} X_{j}$
 $Axions of moned now one
just asymp that "excludions go
as expected ".$$$

So, why do we corre about monolog?
(Kell, one mainly corre: obout their elgebres)
(We don't corre about closure genetors,
Hay are tools to study closed nets!)
Def An elgebre for a monod T on
C is a couple (e, a) where

$$T_{c} \xrightarrow{a}$$
 c
c is ere object and a is a
morphism, such that.
 $T_{c} \xrightarrow{a}$ C
 $T_{c} \xrightarrow{b}$ Tc
 $T_{c} \xrightarrow{c}$ Ta
 $T_{c} \xrightarrow{c}$ Ta
 $T_{c} \xrightarrow{c}$ this is tilling you
that a is coherent
with the multiplication.







CATEGORY THEORY

IVAN DI LIBERTI

EXERCISES

Exercise 1 (**I**). Describe the monads (unit and counit) on Set whose algebras are: monoids, groups, semigroups.

Exercise 2 (**D**). Consider the free-forgetful adjunction D : Set \subseteq Top : U, where D equips a set with the discrete topology over it. Compute the algebras for the induced monad over Set.

Exercise 3 (**D**). A monad *T* on a category *C* is idempotent if its multiplication if its multiplication is an isomorphism. Show that the fortgetful functor U_T : Alg(*T*) \rightarrow *C* of an idempotent monad is fully faithful.

Exercise 4 (**D**). Let *C* be a category with coproducts and a terminal object. Can you always put a monad structure on the *maybe endofunctor* $c \mapsto c \coprod 1$?

Exercise 5 (**D**). Show that the category of fields is not monadic over Set.

Exercise 6 (**D**). Show that there is a monad on directed graphs whose algebras are small categories.

Exercise 7 (**D**). Show that there is a monad on the category of small categories (and functors) whose algebras are posets.

The riddle of the week (\mathbf{A} , \mathbf{P}). Describe a monad structure on the functor of ultrafilter $X \mapsto \beta(X)$. Show that its algebras are compact T2 spaces (and continuous functions).

• the exercises in the red group are mandatory.

- pick at least one exercise from each of the yellow groups.
- pick at least two exercises from each of the blue groups.
- nothing is mandatory in the brown box.
- The riddle of the week. It's just there to let you think about it. It is not a mandatory exercise, nor it counts for your evaluation. Yet, it has a lot to teach.
- useful to deepen your understanding. Take your time to solve it. (May not be challenging at all.)

measures the difficulty of the exercise. Note that a technically easy exercise is still very important for the foundations of your knowledge.

A It's just too hard.

The label **Leinster** refers to the book **Basic Category Theory**, by *Leinster*. The label **Riehl** refers to the book **Category Theory in context**, by *Riehl*.

Date: December 1, 2020.