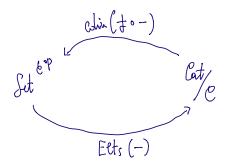
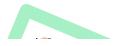


$$\frac{\operatorname{Runk}}{\operatorname{Runk}} \quad \begin{array}{c} \downarrow_{A} \\ \downarrow_{A} \\ \end{array} \stackrel{?}{\longrightarrow} \mathcal{P}(A) \quad (\text{Yourder})$$

Run One an dro go in the other direction $\frac{\pi: 0 \xrightarrow{X} t}{\pi: 0 \xrightarrow{X} t} \xrightarrow{\xi} \text{Set}^{*}$ $\frac{\pi: 0 \xrightarrow{X} t}{P_{i}:= \operatorname{estim}(f \times) \in \operatorname{Set}^{\circ P}$

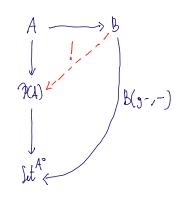


$$\frac{1}{2} \operatorname{hm} \operatorname{colim} \left(f \circ \mathcal{T}_{p} \right) \cong \mathcal{P}$$



Def the "Lerve" of
$$g$$
 is
the functor
 $B(g-,-): B \longrightarrow Set^{A^{\circ P}}$
 $b \longmapsto B(g-, b)$

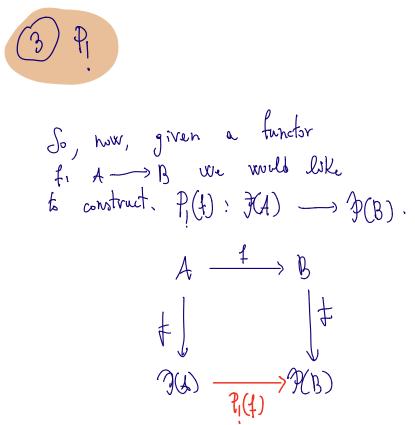
$$\begin{array}{c} & \mathcal{H}(A) & & \text{out of that for } T^{P^{*}} \\ & \mathcal{H}(B) \\ &$$

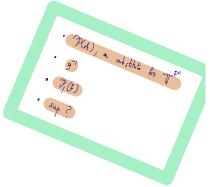


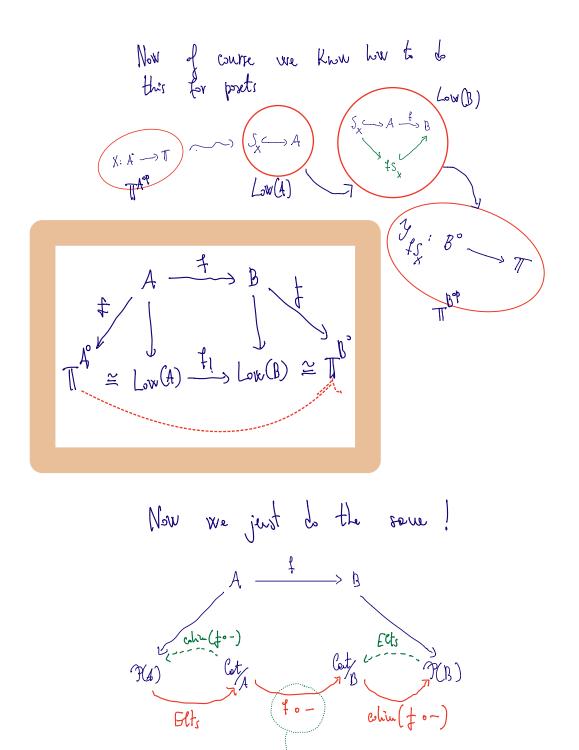
A ____B A ____ ga.

Run (Somity cleck, the nerve
in posets is a weak
counteringe "-
$$p \xrightarrow{f} Q$$
 $Q(f-,q): p^{op} \longrightarrow T$
 $f \xrightarrow{f} Q$ $Q(f-,q): p^{op} \longrightarrow T$

S. the corresponding lower set $5 \mathcal{O}(f-,q)$ is $f(q)^{\mu} = \left\{ p \in P : fp \in q \right\}$







X L A F b

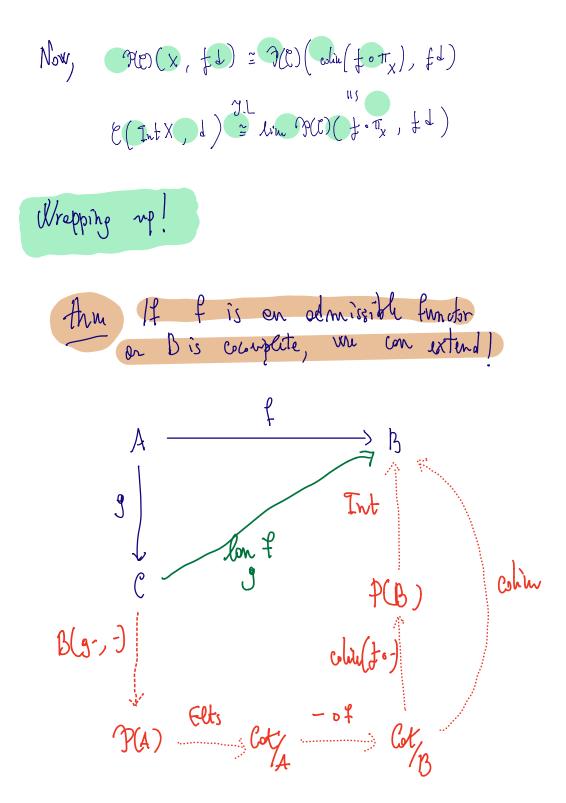
Fot

Rue the ide is

$$f_{1}(t)(X) = f_{1}(t)(\bigcup_{X \in X} \{x\}) = \bigcup_{X \in X} \{f(w)\}.$$
(3) sup
$$f_{1}(w) = f_{1}(t)(\bigcup_{X \in X} \{x\}) = \bigcup_{X \in X} \{f(w)\}.$$
(4)
$$f_{1}(w) = f_{1}(t)(\bigcup_{X \in X} \{x\}) = \bigcup_{X \in X} \{f(w)\}.$$
(5)
$$f_{1}(w) = f_{1}(t)(\bigcup_{X \in X} \{x\}) = \bigcup_{X \in X} \{f(w)\}.$$
(6)
$$f_{1}(w) = f_{1}(t)(\bigcup_{X \in X} \{x\}) = \bigcup_{X \in X} \{f(w)\}.$$
(7)
$$f_{2}(w) = \bigcup_{X \in X} \{f(w)\}.$$
(8)
$$f_{2}(w) = \bigcup_{X \in X} \{f(w)\}.$$
(9)
$$f$$

Elts, Coto Cohim Now we prove that Int is Coto Cohim left adjoint. I event to show that...

 $\mathcal{C}(\operatorname{Int}X, d) \cong \mathcal{H}(\mathcal{C})(X, fd)$



Now let us nee now properties of
this construction.
(1) We have constructed left
Non extension, using limits
One can construct right
Rom actionous
(2) there is a more general
presentation, which is metal
in more dostruct cityopy
theory. We are very
concrete.
Rem Consider a functor g: t - C
the this induces a functor

$$[A, B] \leftarrow f(e, B)$$

 $f = g \leftarrow f(e, B)$
 $f =$

Ex try to find the whit I count!

$$\frac{f_{nop}}{f_{nop}} \quad if \quad g \quad is \quad fully \quad fortherhol, \\ th \quad Ken \quad externion \quad is \quad on \quad externion, i.e. \\ \left(\begin{array}{c} low \\ g \end{array} \right) \circ \begin{array}{c} g \\ \cong \end{array} \quad f \\ \begin{array}{c} g \end{array} \quad f \\ \end{array}$$

Freef

$$1 \Rightarrow 2$$
) ok, this is a corollary
of the previous part of the
dense.
 $2 \Rightarrow 1$) left adjusts are constitute.
 $4 b \in B$, $B(f - , b)$ is
a small client of representables.
Now $B(f - , b) \cong f(-, gb)$
But then
 $B(f - , b) \cong f(gb)$
so it is representable [

CATEGORY THEORY

IVAN DI LIBERTI

EXERCISES

Riehl (Kan extensions have a universal property). Read section 6.1, where a Kan extensions are introduced in a more abstract way and study Thm 6.2.1 which proves that our concrete formula is explicitly computing the Kan extension, when possible.

Riehl (Concepts are Kan extensions). Read section 6.5, where it is shown that many categorical concepts can be phrased in terms of existence of Kan extensions.

Exercise 1 (\blacksquare). Prove^a, when all the functors in the equations are well-defined, that

 $lan_{fg}(h) \cong lan_f(lan_g h).$

Exercise 2 (\blacksquare). Try to show that if f has a right adjoint g, then

 $lan_f(1) \cong g.$

Exercise 3 (**D**). Prove, using our definition, that when g is fully faithful, then $(lan_g f) \circ g \cong f$.

^aHint. Use that Kan extensions provide left adjoints to precomposition.

- the exercises in the red group are mandatory.
- pick at least one exercise from each of the yellow groups.
- pick at least two exercises from each of the blue groups.
- nothing is mandatory in the brown box.
- The riddle of the week. It's just there to let you think about it. It is not a mandatory exercise, nor it counts for your evaluation. Yet, it has a lot to teach.
- useful to deepen your understanding. Take your time to solve it. (May not be challenging at all.)

measures the difficulty of the exercise. Note that a technically easy exercise is still very important for the foundations of your knowledge.

A It's just too hard.

The label **Leinster** refers to the book **Basic Category Theory**, by *Leinster*. The label **Riehl** refers to the book **Category Theory in context**, by *Riehl*.

Date: December 8, 2020.