

Lecture 3: Adjunctivity  
two approaches to dynactions  
Empirical (Historical  
Trae contractions in  
narrowed lychows, Bedrey, Barry, Children, Constants,  
That chiral (true proper) Grap(TX), G) 
$$\cong$$
 Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free proper) Grap(TX), G)  $\cong$  Set(X, WG))  
found etry (free pr

this is very hard to group. Somity check.  

$$F : fit \longleftrightarrow for : N$$

$$FU(G) \xrightarrow{c_{0}} G \qquad X \xrightarrow{l_{X}} UF(X)$$

$$(w) \qquad (w) \qquad$$

Non example Fld fet Rem Afrinctions compose

## **CATEGORY THEORY**

## IVAN DI LIBERTI

| EXERCISES |
|-----------|
|-----------|

Leinster (□). 2.1.12 Leinster (□). 2.1.15

Leinster (**D**). 2.1.16

**Leinster** (**D**). 2.2.10

**Leinster** (**□**). 2.2.11

Leinster (**D**). 2.2.12

**Exercise 1** (**D**). Show that the a right adjoint preserves monomorphisms.

Leinster (**D**). 2.3.12

**Exercise 2** (**D**). What is a cartesian closed bounded lattice?

**Exercise 3** (**ID**). Show that the inclusion of the category of abelian groups in the category of groups  $\iota$ : Ab  $\hookrightarrow$  Grp has a left adjoint.

**Exercise 4** (**ID**). Prove that the inclusion Haus  $\hookrightarrow$  Top of the full subcategory of Hausdorff spaces into the category of all spaces has a left adjoint.

- the exercises in the red group are mandatory.
- pick at least one exercise from each of the yellow groups.
- pick at least two exercises from each of the blue groups.
- nothing is mandatory in the brown box.
- The riddle of the week. It's just there to let you think about it. It is not a mandatory exercise, nor it counts for your evaluation. Yet, it has a lot to teach.
- useful to deepen your understanding. Take your time to solve it. (May not be challenging at all.)

measures the difficulty of the exercise. Note that a technically easy exercise is still very important for the foundations of your knowledge.

**A** It's just too hard.

The label **Leinster** refers to the book **Basic Category Theory**, by *Leinster*. The label **Riehl** refers to the book **Category Theory in context**, by *Riehl*.

Date: October 20, 2020.