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CATEGORY THEORY

IVAN DI LIBERTI

EXERCISES

Riehl (Kan extensions have a universal property). Read section 6.1, where a Kan
extensions are introduced in a more abstract way and study Thm 6.2.1 which proves
that our concrete formula is explicitely computing the Kan extension, when possi-
ble.

Riehl (Concepts are Kan extensions). Read section 6.5, where it is shown that many
categorical concepts can be phrased in terms of existence of Kan extensions.

Exercise 1 (�). Provea, when all the functors in the equations are well-defined,
that

lanfg(ℎ) ≅ lanf (langℎ).

Exercise 2 (�). Try to show that if f has a right adjoint g, then
lanf (1) ≅ g.

Exercise 3 (�). Prove, using our definition, that when g is fully faithful, then
(langf )◦g ≅ f.

aHint. Use that Kan extensions provide left adjoints to precomposition.

○ the exercises in the red group are mandatory.
○ pick at least one exercise from each of the yellow groups.
○ pick at least two exercises from each of the blue groups.
○ nothing is mandatory in the brown box.
○ The riddle of the week. It’s just there to let you think about it. It is not a mandatory

exercise, nor it counts for your evaluation. Yet, it has a lot to teach.
1 useful to deepen your understanding. Take your time to solve it. (May not be

challenging at all.)
� measures the difficulty of the exercise. Note that a technically easy exercise is still

very important for the foundations of your knowledge.
o It’s just too hard.

The label Leinster refers to the book Basic Category Theory, by Leinster.
The label Riehl refers to the book Category Theory in context, by Riehl.
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