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1. First order logic

1.1. Structures. A vocabulary τ is a set consisting of relation sym-
bols, function symbols and constant symbols. We will usually use re-
lation symbols such as P , Q, R, ≤, . . . , function symbols such as f ,
g, h, ·, +, . . . , and constant symbols such as c, d, 0, 1, . . . . To every
relation symbol and every function symbol there is a natural number
≥ 1 attached to it, the arity of the symbol.

Now fix a vocabulary τ . A structure A for τ (a τ-structure) is a
nonempty set A together with
(S1) relations RA ⊆ An for every n-ary relation symbol R ∈ τ ,
(S2) functions fA : Am → A for every m-ary function symbol f ∈ τ

and
(S3) constants cA ∈ A for every constant symbol c ∈ τ .

A structure A is often identified with its underlying set A. Sometimes
we will denote the interpretation RA, fA or cA of a symbol R, f or c
by R, f , respectively c as well.

A τ -structure B is a substructure of A if
(U1) the underlying set B of B is a subset of A,
(U2) every relation RB is the restriction of RA to B,
(U3) every function fB is the restriction of fA to B and
(U4) every constant cB agrees with cA.

Observe that (U3) implies that B is closed under all the functions fA.
Similarly, (U4) implies that all constants cA are already elements of B.

Two τ -structures A and B are isomorphic if there is a bijection
i : A→ B such that

(I1) for every n-ary relation symbol R ∈ τ and all a1, . . . , an ∈ A,
(a1, . . . , an) ∈ RA ⇔ (i(a1), . . . , i(an)) ∈ RB,

(I2) for every n-ary function symbol f ∈ τ and all a1, . . . , an ∈ A,
i(fA(a1, . . . , an)) = fB(i(a1), . . . , i(an))

and
(I3) for all constant symbols c ∈ τ ,

i(cA) = cB.

1.2. Formulas. A first order formula over τ is a finite sequence over
the alphabet

{∃,∨,¬,=, (, )} ∪ τ ∪ Var,

where Var is a countably infinite set of variables. We tacitly assume
that the sets {∃,∨,¬,=, (, )}, τ and Var are pairwise disjoint. The
variables are usually denoted by x, y, z, . . . . Before defining formulas,
let us define terms.

A term over τ is a finite sequence of characters that can be obtained
by finitely many applications of the following rules:
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(T1) All constant symbols in τ and all variables are terms.
(T2) If t1, . . . , tn are terms and f ∈ τ is an n-ary function symbol,

then f(t1, . . . , tn) is a term.
A first order formula over τ is a finite sequence of characters that

can be obtained by finitely many applications of the following rules:
(F1) If t1 and t2 are terms over τ , then (t1 = t2) is a formula.
(F2) If R ∈ τ is an n-ary relation symbol and if t1, . . . , tn are terms

over τ , then R(t1, . . . , tn) is a formula.
(F3) If ϕ is a formula, then so is ¬ϕ.
(F4) If ϕ and ψ are formulas, then (ϕ ∨ ψ) is a formula.
(F5) If ϕ is a formula and x a variable, then ∃xϕ is a formula.

If ϕ and ψ are formulas, we use (ϕ∧ψ), (ϕ→ ψ), (ϕ↔ ψ), and ∀xϕ as
abreviations for ¬(¬ϕ∨¬ψ), (¬ϕ∨ψ), ¬(¬(¬ϕ∨ψ)∨¬(ϕ∨¬ψ)), and
¬∃x¬ϕ, respectively. Also, we omit parentheses as long the readability
does not suffer.

A variable x occurs freely in ϕ if x occurs outside the scope of a
quantifier ∃x or ∀x. A formula without free variables is a sentence.

We use the notation ϕ(x1, . . . , xn) to indicate that x1, . . . , xn are
pairwise distinct variables and that the free variables of ϕ are among
the xi, 1 ≤ i ≤ n.

1.3. Semantics. We fix a τ -structure A = (A, . . . ). Given a τ -term
t(x1, . . . , xn) and a1, . . . , an ∈ A we define t(a1, . . . , an) (or, in more
accurat notation, tA(a1, . . . , an)) as follows:
(TA1) xi(a1, . . . , an) = ai
(TA2) If c ∈ τ is a constant symbol, let c(a1, . . . , an) = cA.
(TA3) If f ∈ τ is an m-ary function symbol and t1(x1, . . . , xn), . . . ,

tm(x1, . . . , xn) are terms, let

f(t1, . . . , tm)(a1, . . . , an) = fA(t1(a1, . . . , an), . . . , tm(a1, . . . , an)).

Now, for every formula ϕ(x1, . . . , xn) and all a1, . . . , an ∈ A we define
the validity of ϕ(a1, . . . , an) in A:
(FG1) If t1(x1, . . . , xn) and t2(x1, . . . , xn) are terms, then

(t1 = t2)(a1, . . . , an) holds in A iff

t1(a1, . . . , an) = t2(a1, . . . , an).

(FG2) If t1(x1, . . . , xn), . . . , tm(x1, . . . , xn) are terms and R is an m-ary
relation symbol, then R(t1, . . . , tm)(a1, . . . , an) holds in A iff

(t1(a1, . . . , an), . . . , tm(a1, . . . , an)) ∈ RA.
(FG3) If ϕ(x1, . . . , xn) and ψ(x1, . . . , xn) are formulas, then

(ϕ ∨ ψ)(a1, . . . , an) holds in A iff at least one of ϕ(a1, . . . , an)
and ψ(a1, . . . , an) holds in A.

(FG4) If ϕ(x1, . . . , xn) is a formula, then ¬ϕ(a1, . . . , an) holds in A iff
ϕ(a1, . . . , an) does not hold in A.
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(FG5) If ϕ(x, x1, . . . , xn) is a formula, then ∃xϕ(a1, . . . , an) holds in A
iff there is a ∈ A such that ϕ(a, a1, . . . , an) holds in A.

If ϕ(a1, . . . , an) holds in A, we write A |= ϕ(a1, . . . , an).
We extend the model relation |= to (possibly infinite) sets of for-

mulas. Let a : Var → A be any function, an assignment of elements
of A to each of the variables. Also, let Φ be a set of formulas over τ .
Then Φ holds in A under the assignment a (or with respect to a) iff
for every formula ϕ(x1, . . . , xn) ∈ Φ we have

A |= ϕ(a(x1), . . . , a(xn)).

In this case we write A |= Φ[a] and say that (A, a) is a model of Φ. If
Φ holds in A with respect to every assignment, then we write A |= Φ
and say that A is a model of Φ.

Observe that the validity of a set of sentences in A is independent
of the particular assignment. If i : A→ B is an isomorphism between
the τ -structures A and B, every assignment a : Var → A induces an
assignment b = i ◦ a : Var → B such that for every set Φ of formulas
the following holds:

A |= Φ[a]⇔ B |= Φ[b]

In particular, isomorphic structures satisfy exactly the same sentences.
The symbol |= is also used for the (semantic) implication between set

of formulas. Let Φ and Ψ be sets of formulas over τ . Then Φ implies
Ψ if for all τ -structures and all assignments a the following holds:

A |= Φ[a]⇒ A |= Ψ[a]

In this case we write Φ |= Ψ.
We also allow single formulas on either side of |=, with the obvious

meaning.

1.4. Completeness. One of the most important results of Mathemat-
ical Logic is the Completeness Theorem which states that the rela-
tion |= between sets of formulas can be defined in a purely syntactical
way.

In order to do this, given a vocabulary τ , one fixes a set of rules
and a set of axioms. The axioms are specific formulas over τ such as
(x = y) → (y = x) for all variables x and y and ϕ ∨ ¬ϕ for every
formula ϕ over τ . The rules typically are pairs of sets of formulas such
as ({ϕ, ψ}, {(ϕ∧ψ)}). The rule ({ϕ, ψ}, {(ϕ∧ψ)}) allows it to deduce
the formula (ϕ ∧ ψ) from ϕ and ψ.

Given a set Φ of formulas over τ and a formula ψ, a proof of ψ
from Φ is a finite sequence of formulas that ends with ψ and in which
every formula is an axiom or an element of Φ or follows from previous
formulas in the sequence by application of one of the rules. The formula
ψ can be deduced from Φ if there is a proof of ψ from Φ. In this case
we write Φ ` ψ. If Ψ is a set of formulas and for all ψ ∈ Ψ, Φ ` ψ,
then we write Φ ` Ψ.
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The rules and axioms are chosen in such a way that the following
theorem holds true:

Theorem 1.1 (Gödel’s Completeness Theorem). For every vocabulary
τ , every set Φ of formulas over τ and every formula ψ over τ ,

Φ ` ψ ⇔ Φ |= ψ.

A set Φ of formulas is consistent if there is a formula ψ which cannot
be deduced from Φ. It turns out Φ is consistent iff no contradiction
such as ψ ∧ ¬ψ can be deduced from Φ.

The Completeness Theorem is usually proved in a slightly different
form:

Theorem 1.2. A set Φ of formulas over a vocabulary τ is consistent
iff it has a model.

Exercise 1.3. Show that Theorem 1.1 implies Theorem 1.2.
Hint: This implication can be proved without showing that Theorem

1.1 or Theorem 1.2 are actually true. Moreover, you have to be a little
bit careful since we are considering sets of formulas, not just sets of
sentences. A model of a set of formulas consists of both a structure
and an assignment.

Exercise 1.4. Show that Theorem 1.2 implies Theorem 1.1.
Hint: The same as in Exercise 1.3.
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1.5. Examples of structures and first order theories. A theory
over a vocabulary τ is a set of sentences over τ . Given a structure A,
the theory of A is the set Th(A) of all sentences ϕ over τ such that
A |= ϕ. If C is a class of τ -structures, then

Th(C) =
⋂
A∈C

Th(A)

is the theory of C. If Φ is a theory, then Mod(Φ) is the class of all
structures that are models of Φ.

We briefly discuss a few concrete examples of vocabularies, structures
and theories.

1.5.1. Groups. There are several choices for vocabularies of group the-
ory, namely a single binary function symbol · for the multiplication, a
binary function symbol together with a constant symbol e for the iden-
tity element or ·, e and a unary function symbol −1 for the inversion of
group elements.

If τ = {·}, we say a group is a τ -structure (G, ·) satisfying the
following sentences:
(G1) ∀x∀y∀z((x · y) · z = x · (y · z))
(G2) ∃x∀y(x · y = y ∧ y · x = y)
(G3) ∀x∃y∀z(∀z′(z · z′ = z′ ∧ z′ · z = z′)→ (x · y = z ∧ y · x = z))

Group theory is the theory of the class of all groups, which by the
Completeness Theorem is the deductive closure of the set of axioms
of group theory stated above.

If we use the vocabulary {·, e, −1}, we can state the axioms as follows:
(G1) ∀x∀y∀z((x · y) · z = x · (y · z))
(G2a) ∀x(e · x = x ∧ x · e = x)
(G3a) ∀x(x · x−1 = e ∧ x−1 · x = e)

Observe that these axioms are all of the same form: universal quanti-
fiers followed by an equation (or a conjunction of equations). A formula
is atomic if it contains no quantifiers or logical connectives (¬, ∨).

Exercise 1.5. Let τ be a vocabulary and let Φ be a set of sentences that
start with some universal quantifiers followed by an atomic formula. If
A is a model of Φ and B is a substructure of A, then B is a model of
Φ.

Notice that in a group (G, ·) the identity element and the inversion of
elements are definable in the following sense: there are formulas ϕ(x)
and ψ(x, y) such that for all a ∈ G, (G, ·) |= ϕ(a) iff a is the identity
element of G and for all b, c ∈ G, (G, ·) |= ψ(b, c) iff b is the inverse of
c. Namely, let ϕ(x) be the formula ∀y(x · y = y ∧ y · x = y) and let
ψ(x, y) be the formula

∀z(ϕ(z)→ (x · y = z ∧ y · x = z)).
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1.5.2. The natural numbers. Now consider the structure (N, S, 0), where
S denotes the function that maps every natural number to its immedi-
ate successor. Consider the following Peano Axioms:
(PA1) ∀x¬(S(x) = 0)
(PA2) ∀x∀y(S(x) = S(y)→ x = y)
(PA3) Whenever A ⊆ N contains 0 and is closed under the function

S, then A = N.
It is well known that these three axioms determine (N, S, 0) up to iso-
morphism. However, there is no way to express (PA3) in first order
logic. A reasonable approximation is the following scheme: for every
formula ϕ(x, y1, . . . , yn) consider

(PA3(ϕ)) ∀y1 . . . ∀yn((ϕ(0, y1, . . . , yn) ∧ ∀x(ϕ(x, y1, . . . , yn)

→ ϕ(S(x), y1, . . . , yn)))→ ∀xϕ(x, y1, . . . , yn)).

Here ϕ(0, y1, . . . , yn) and ϕ(S(x), y1, . . . , yn) are used to denote the for-
mulas obtained from ϕ by replacing every free occurrence of x by 0 or
S(x), respectively.

PA is the theory consisting of the axioms (PA1), (PA2) and (PA3(ϕ))
for all formulas ϕ(x, y1, . . . , yn) over the vocabulary {0, S}. As we will
see later, PA does not determine (N, S, 0) up to isomorphism.

1.5.3. Fields. If for fields we choose the vocabulary {+,−, ·, −1, 0, 1},
where we consider − as a unary function symbol, we have to be careful
with the axioms. Namely, for a field (F,+,−, ·, −1, 0, 1), the function
x 7→ x−1 is only a partial function since it is not defined on 0. However,
our concept of a structure does not allow for partial functions. So, if
we insist on having −1 in our vocabulary, we should add a new axiom to
the usual field axioms, such as 0−1 = 0, understanding that we always
have to exclude 0 when we talk about multiplicative inverses of field
elements.

1.5.4. Vector spaces. In linear algebra one typically considers at the
same time various vector spaces over the same field, rather than vector
spaces over different fields. One way to treat vector spaces as structures
is to fix a field F and to introduce for each a ∈ F a unary function
symbol fa that represents the multiplication of elements of the vector
space with a. So, let τ = {+,−, 0} ∪ {fa : a ∈ F}. In the case of
an uncountable field F such as F = R or F = C, this gives a natural
example of an uncountable vocabulary.

Observe that in the case that F is infinite, we need infinitely many
axioms to axiomatize the interaction between field elements and ele-
ments of the vector space. For example, for all a, b ∈ F we need the
axiom ∀x(fa(fb(x)) = fab(x)). This scheme of axioms corresponds to
the single axiom

“for all a, b ∈ F and all v ∈ V , a · (b · v) = (a · b) · v”
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that is usually used in linear algebra. Here V stands for the vector
space under consideration.

Exercise 1.6. Give a complete axiomatization of vector spaces as
structures over τ .

1.6. Compactness. One of the important properties of first order
logic is its compactness. If there is a proof of a formula ψ from a
set of formulas Φ, then this proof uses only finitely many formulas
from Φ. Therefore we have the following theorem:

Theorem 1.7 (Finiteness Theorem). If Φ is a set of formulas over a
vocabulary τ and ψ is a formula over τ , then Φ ` τ iff there is a finite
set Φ0 ⊆ Φ such that Φ0 ` ψ.

Using the Completeness Theorem, we obtain that Φ |= ψ iff there
is a finite set Φ0 ⊆ Φ such that Φ0 |= ψ. However, we will give a
purely semantic proof of the Finiteness Theorem for the relation |=.
The Finiteness Theorem for |= follows from

Theorem 1.8 (Compactness Theorem). Let Φ be a set of formulas
over τ . Then Φ has a model iff every finite subset of Φ does.

In order to prove the Compactness Theorem, we will use ultraprod-
ucts, which are formed using ultrafilters.

Definition 1.9. Let I be a nonempty set. A nonempty collection
F ⊆ P(I) is a filter on I if
(F1) ∅ 6∈ F
(F2) If A ∈ F and A ⊆ B ⊆ I, then B ∈ F .
(F3) If A,B ∈ F , then A ∩B ∈ F .
A filter F is an ultrafilter if it is a maximal filter (with respect to

set-theoretic inclusion).
A collection S ⊆ P(I) has the finite intersection property if for

all A1, . . . , An ∈ S, A1 ∩ · · · ∩ An 6= ∅.

Lemma 1.10. Every family S of subsets of I with the finite intersec-
tion property can be extended to an ultrafilter.

Proof. Let

F =
{
A ⊆ I : there is a finite T ⊆ S such that

⋂
T ⊆ A

}
.

F is the smallest filter that includes S. Consider the partial order of
all filters on I that extend F , ordered by set-theoretic inclusion. It is
easily checked that the union of every chain of filters is again a filter on
I. Hence, by Zorn’s Lemma, the partial order has a maximal element,
which is an ultrafilter that extends S. �

Lemma 1.11. Let F be a filter on a set I. Then the following are
equivalent:
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(1) F is an ultrafilter.
(2) For all A ⊆ I, A ∈ F iff I \ A 6∈ F .
(3) For all A,B ⊆ I, if A ∪B ∈ F , then A ∈ F or B ∈ F .

Proof. (1)⇒(2): Since F is a filter, it contains at most one of the sets A
and I \A. Suppose I \A 6∈ F . Since F is closed under taking supersets,
this implies that F contains no subset of I \ A. In other words, every
element of F intersects A. Since F is closed under finite intersections,
it follows that F∪{A} has the finite intersection property. Hence there
is an ultrafilter G on I such that F ∪ {A} ⊆ G. Since F is a maximal
filter, F = G and thus A ∈ F .

(2)⇒(3): Suppose neither A nor B are elements of F . By (2), I \
A, I \B ∈ F and therefore I \A ∩ I \B = I \ (A ∪B) ∈ F . It follows
that A ∪B 6∈ F .

(3)⇒(1): Let F be a filter satisfying (3). We show that F is maximal.
Let A ⊆ I be such that F∪{A} is contained in a filter, i.e., has the finite
intersection property. Then I \ A 6∈ F . However, (I \ A) ∪ A = I ∈ F
since F is nonempty and closed under taking supersets. By (3), A ∈ F .
This shows the maximality of F . �

Exercise 1.12. Let F be an ultrafilter on I. Show that if A1, . . . , An ⊆
I and A1∪· · ·∪An ∈ F , then at least one of the sets Ai, i ∈ {1, . . . , n},
is an element of F .

We now fix a vocabulary τ .

Definition 1.13. Let I be a set and for each i ∈ I let Ai be a τ -
structure. Let

∏
i∈I Ai be the usual product of the sets Ai, i.e.,∏

i∈I

Ai = {a : a is a function defined on I

such that for all i ∈ I, a(i) ∈ Ai}.

For every τ -formula ϕ(x1, . . . , xn) and for all a1, . . . , an ∈
∏

i∈I Ai let

[[ϕ(a1, . . . , an)]] = {i ∈ I : Ai |= ϕ(a1(i), . . . , an(i))}.
If U is an ultrafilter on I and a, b ∈

∏
i∈I Ai, we let a ∼U b iff

[[a = b]] = {i ∈ I : a(i) = b(i)} ∈ U .

Lemma 1.14. Let (Ai)i∈I be a family of τ -structures and let U be an
ultrafilter on I.

a) ∼U is an equivalence relation on
∏

i∈I Ai.
b) If f ∈ τ is an n-ary function symbol and aj ∼U bj for every

j ∈ {1, . . . , n}, then [[f(a1, . . . , an) = f(b1, . . . , bn)]] ∈ U .
c) For every n-ary relation symbol R ∈ τ , if aj ∼U bj for every

j ∈ {1, . . . , n}, then
[[R(a1, . . . , an)]] ∈ U ⇔ [[R(b1, . . . , bn)]] ∈ U .
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Proof. a) It is clear that ∼U is symmetric and reflexive. In order to
show transitivity, let a ∼U b and b ∼U c. Now [[a = b]], [[b = c]] ∈ U .
Since U is closed under finite intersections, [[a = b]]∩ [[b = c]] ∈ U . Now
[[a = b]] ∩ [[b = c]] ⊆ [[a = c]] and thus [[a = c]] ∈ U . It follows that
a ∼U c.

b) This is similar to the proof of a). If aj ∼U bj for every j ∈
{1, . . . , n}, then [[a1 = b1]] ∩ · · · ∩ [[an = bn]] ∈ U . Now for all

i ∈ [[a1 = b1]] ∩ · · · ∩ [[an = bn]]

we have
f(a1(i), . . . , an(i)) = f(b1(i), . . . , bn(i)).

It follows that [[f(a1, . . . , an) = f(b1, . . . , bn)]] ∈ U and thus

f(a1, . . . , an) ∼U f(b1, . . . , bn).

c) This is similar to the proof of b). If aj ∼U bj for every j ∈
{1, . . . , n}, then [[a1 = b1]] ∩ · · · ∩ [[an = bn]] ∈ U . If i ∈ [[a1 = b1]] ∩
· · ·∩ [[an = bn]], then (a1(i), . . . , an(i)) ∈ RAi iff (b1(i), . . . , bn(i)) ∈ RAi .
Now, if [[R(a1, . . . , an)]] ∈ U , then

J = [[R(a1, . . . , an)]] ∩ [[a1 = b1]] ∩ · · · ∩ [[an = bn]] ∈ U .

For every i ∈ J we have i ∈ [[R(b1, . . . , bn)]] and thus [[R(b1, . . . , bn)]] ∈
U . The other direction of c) is symmetric. �

Definition 1.15. Let (Ai)i∈I and U be as in Lemma 1.14. The under-
lying set of the strucure A =

∏
i∈I Ai/U is the set A =

∏
i∈I Ai/ ∼U of

all ∼U -equivalence classes. For every constant symbol c ∈ τ we let cA
be the ∼U -equivalence class of the function that assigns to every i ∈ I
the value cAi ∈ Ai.

Given a ∈
∏

i∈I Ai, by [a]U we denote the ∼U -equivalence class of
a. For every n-ary function symbol f ∈ τ and a1, . . . , an ∈

∏
i∈I Ai let

fA([a1]U , . . . , [an]U) be the ∼U -equivalence class of the function that
assigns to each i ∈ I the value fAi(a1(i), . . . , an(i)).

For every n-ary relation symbol R ∈ τ and all a1, . . . , an ∈
∏

i∈I Ai
let ([a1]U , . . . , [an]U) ∈ RA iff [[R(a1, . . . , an)]] ∈ U . Observe that the
structure A is well-defined by Lemma 1.14. A is the ultraproduct of
the structures Ai, i ∈ I, with respect to the ultrafilter U .

Exercise 1.16. Let (Ai)i∈I be a family of τ -structures. Let i0 ∈ I and
let U be the ultrafilter on I that consists of all subsets of I that contain
i0. Show that

∏
i∈I Ai/U is isomorphic to Ai0 .

Theorem 1.17 (Łoś). Let A be the ultraproduct of the structures Ai,
i ∈ I, with respect to the ultrafilter U on I. Then for every formula
ϕ(x1, . . . , xn) and all a1, . . . , an ∈

∏
i∈I Ai,

A |= ϕ([a1]U , . . . , [an]U) ⇔ [[ϕ(a1, . . . , an)]] ∈ U .
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Proof. We prove the theorem by induction on the complexity of formu-
las. For atomic formulas, Łoś’s Theorem follows immediately from the
definition of the ultraproduct.

Now let ϕ(x1, . . . , xn) and ψ(x1, . . . , xn) be formulas and a1, . . . , an ∈∏
i∈I Ai. Assume that for χ = ϕ and χ = ψ it holds that

[[χ(a1, . . . , an)]] ∈ U iff A |= χ([a1]U , . . . , [an]U).

We have
[[(ϕ ∨ ψ)(a1, . . . , an)]] = [[ϕ(a1, . . . , an)]] ∪ [[ψ(a1, . . . , an]].

Now
[[ϕ(a1, . . . , an)]] ∪ [[ψ(a1, . . . , an]] ∈ U

iff [[ϕ(a1, . . . , an)]] ∈ U or [[ψ(a1, . . . , an)]] ∈ U . Hence, by our assump-
tion on ϕ and ψ,

[[(ϕ ∨ ψ)(a1, . . . , an)]] ∈ U iff A |= (ϕ ∨ ψ)([a1]U , . . . , [an]U).

Also,
[[¬ϕ(a1, . . . , an)]] = I \ [[ϕ(a1, . . . , an)]].

Since U is an ultrafilter,
I \ [[ϕ(a1, . . . , an)]] ∈ U iff [[ϕ(a1, . . . , an)]] 6∈ U .

This shows that
A |= ¬ϕ([a1]U , . . . , [an]U) iff [[¬ϕ(a1, . . . , an)]] ∈ U .

Finally, consider the formula ∃xϕ(x, y1, . . . , yn), let b1, . . . , bn ∈
∏

i∈I Ai
and assume that for all a ∈

∏
i∈I Ai,

[[ϕ(a, b1, . . . , bn)]] ∈ U iff A |= ϕ([a]U , [b1]U , . . . , [bn]U).

If [[(∃xϕ)(b1, . . . , bn)]] ∈ U , for each i ∈ [[(∃xϕ)(b1, . . . , bn)]] we choose
a(i) ∈ Ai such that Ai |= ϕ(a(i), b1(i), . . . , bn(i)). For all i ∈ I \
[[(∃xϕ)(b1, . . . , bn)]] choose a(i) ∈ Ai arbitrarily. Now

[[(∃xϕ)(b1, . . . , bn)]] ⊆ [[ϕ(a, b1, . . . , bn)]]

and therefore [[ϕ(a, b1, . . . , bn)]] ∈ U . By our assumption on ϕ,
A |= ϕ([a]U , [b1]U , . . . , [bn]U).

It follows that
A |= (∃xϕ)([b1]U , . . . , [bn]U).

If
A |= (∃xϕ)([b1]U , . . . , [bn]U),

there is some a ∈
∏

i∈I Ai such that
A |= ϕ([a]U , [b1]U , . . . , [bn]U).

By our assumption on ϕ, [[ϕ(a, b1, . . . , bn)]] ∈ U . It follows that
[[(∃xϕ)(b1, . . . , bn)]] ∈ U ,

finishing the proof of Łoś’s theorem. �
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Definition 1.18. An ultrafilter U on a set I is free if it does not
contain any finite sets.

Exercise 1.19. Let U be an ultrafilter on an infinite set I. Show that
U contains a finite set iff U is of the form {S ⊆ I : i ∈ S} for some
i ∈ I.

We have now gathered the necessary tools in order prove the Com-
pactness Theorem.

Proof of Theorem 1.8. Clearly, if Φ has a model, then so does every
finite subset of Φ.

Now assume that every finite subset of Φ has a model. Let I denote
the collection of all finite subsets of Φ. A set S ⊆ I is upward closed
if for every Φ0 ∈ S and every Φ1 ∈ I with Φ0 ⊆ Φ1 we have Φ1 ∈ S. If
S, T ⊆ I are nonempty and upward closed, then so is S ∩ T . Namely,
choose ΦS ∈ S and ΦT ∈ T . Then ΦS ∪ΦT is finite and, by the upward
closedness of S and T , an element of both S and T . Hence S ∩ T 6= ∅.
Also, if Φ0 ∈ S ∩ T and Φ0 ⊆ Φ1 ∈ I, then Φ1 is both in S and in T
and thus in S ∩ T .

This implies that the collection of all nonempty upward closed S ⊆ I
has the finite intersection property. By Lemma 1.10, the family of all
nonempty upward closed subsets of I extends to an ultrafilter U on I.
For every Φ0 ∈ I choose a τ -structure AΦ0 that is a model of Φ0. Let

A =
∏

Φ0∈I

AΦ0/U .

Claim 1.20. A |= Φ

Let ϕ ∈ Φ. Let S = {Φ0 ∈ I : ϕ ∈ Φ0}. Clearly, S is upward closed
and nonempty. It follows that S ∈ U . For every Φ0 ∈ S, AΦ0 |= ϕ.
Hence, by Łoś’s theorem, A |= ϕ. This shows that A is a model of all
of Φ. �

Corollary 1.21 (Finiteness Theorem for |=). For every set Φ of sen-
tences over τ and every sentence ψ over τ , Φ |= ψ iff there is a finite
set Φ0 ⊆ Φ such that Φ0 |= ψ.

Proof. Clearly, if Φ0 |= ψ for some subset of Φ, then Φ |= ψ. Now
assume that for every finite Φ0 ⊆ Φ, Φ0 6|= ψ. Then for every finite
Φ0 ⊆ Φ, Ψ0 ∪ {¬ψ} has a model. It follows that every finite subset of
Φ ∪ {¬ψ} has a model. By Theorem 1.8, Φ ∪ {¬ψ} has a model. This
shows that Φ 6|= ψ. �

A special case of ultraproducts are ultrapowers where each factor
is the same.

Exercise 1.22. Let I be a set, U an ultrafilter on I, and A a τ -
structure. Let B =

∏
i∈I A/U . Let B be the underlying set of B. For
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each a ∈ A let a : I → A be the map that assigns to all i ∈ I the value
a. Consider the map

j : A→ B; a 7→ [a]U .

Show that j[A] carries a substructure of B and that j is a isomor-
phism between A and the substructure of B that lives on j[A].

We will now see our first example of a model of the first order Peano
Axioms that is not isomorphic to N.

Exercise 1.23. Let A = (N, 0, S). Let I = N and let U be a free
ultrafilter on I. Consider the ultrapower B =

∏
i∈I A/U and define

j : A→ B as in Exercise 1.22. Show that j is not onto.

We give another application of ultraproducts.

Theorem 1.24. Let Φ be a theory over a vocabulary τ . If Φ has
arbitrarily large finite models, then it has an infinite model.

Proof. For every n ∈ N let An be a model of Φ of size at least n. Let
I = N and consider the Fréchet filter

F = {S ⊆ N : N \ S is finite }.
Let U be an ultrafilter that extends F . It is easily checked that an
ultrafilter U is free iff it extends F . Let A =

∏
n∈NAn.

For all n ∈ N and all m ≥ n, Am satisfies the sentence

ϕn = ∃x1 . . . ∃xn(x1 6= x2 ∧ · · · ∧ x1 6= xn ∧ x2 6= x3 ∧ · · · ∧ xn−1 6= xn).

By the choice of U , for all n ∈ N the set {m ∈ N : m > n} is an element
of U . Hence, by Łoś’s theorem, for all n ∈ N, A |= ϕn. It follows that
A is an infinite structure. �

This theorem can also easily be proved using the Compactness The-
orem. Namely, if Φ has arbitrarily large finite models, then for all
n ∈ N, Φ∪{ϕn} has a model, where ϕn is defined as in the proof of the
previous theorem. Since ϕm implies ϕn if m ≥ n, we have that every
finite subset of Φ∪ {ϕn : n ∈ N} has a model. Hence Φ∪ {ϕn : n ∈ N}
has a model. But a model of Φ∪{ϕn : n ∈ N} is a model of Φ and has
to be infinite.

Another application of ultraproducts is to prove the finite Ramsey
Theorem from the infinite Ramsey Theorem. We only deal with the
Ramsey Theorem for graphs. Let V be a set and let G = (V,E) be a
graph on V , i.e., let E be a binary relation on V that is both irreflexive
(∀x¬E(x, x)) and symmetric (∀x∀y(E(x, y)↔ E(y, x))). A set H ⊆ V
is homogeneous if either any two elements of H are related or no two
elements of H are related.

Theorem 1.25 (Infinite Ramsey Theorem for graphs). Every infinite
graph has an infinite homogeneous subset.
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Proof. Let G = (V,E) be an infinite graph. Without loss of generality
we may assume that V = N. We define a strictly increasing sequence
(an)n∈N of natural numbers, a sequence (in)n∈N of 0’s and 1’s, and a
sequence (An)n∈N of subsets of N such that A0 ⊇ A1 ⊇ . . . and such
that for all n ∈ N and all m ≥ n, am ∈ An. Let A0 = N and let a0 = 0.
Suppose an and An have been defined. One of the two sets A1

n = {a ∈
An : a > an ∧ E(an, a)} and A0

n = {a ∈ An : a > an ∧ ¬E(an, a)} is
infinite.

Let in ∈ 2 be such that Ainn is infinite. Let An+1 = Ainn and let
an+1 = minAn+1. This finishes the recursive definition of the three
sequences. Now for all n,m ∈ N with n < m, whether or not E(an, am)
holds only depends on n. Namely, E(an, am) holds iff in = 1.

Let i ∈ 2 be such that the set {n ∈ N : in = i} is infinite. Now
H = {an : in = i} is an infinite homogeneous subset of V . �

The finite Ramsey Theorem says that for every n ∈ N there is m ∈ N
such that every graph of size at least m has a homogeneous subset of
size at least n.

Theorem 1.26 (Finite Ramsey Theorem for graphs). For every n ∈ N
there is m ∈ N such that every graph of size at least m has a homoge-
neous subset of size at least n.

Proof. Suppose the finite Ramsey theorem fails. Then there is n ∈ N
such that for all m ∈ N there is a finite graph Gm of size at least m
without a homogeneous set of size n. Let U be a free ultrafilter on N.
Let G =

∏
m∈NGm/U . Now G is an infinite graph that satisfies the

statement

¬∃x1, . . . , xn(“the xi are pairwise distinct
and form a homogeneous set”),

which can be easily expressed in first order logic. This shows that G is
a counter example to the infinite Ramsey Theorem. �

Exercise 1.27. Use the Compactness Theorem to deduce the finite
Ramsey Theorem from the infinite.

We conclude this section on compactness with an observation about
fields of positive characteristic. Recall that a field F is of characteristic
0 iff for all n > 0 the sum 1+ · · ·+1 with n summands is different from
0. F is of characteristic n > 0 if n is the minimal integer > 0 such that
the sum 1 + · · · + 1 with n summands is equal to 0. It turns out that
the characteristic of a field is either 0 or a prime number.

Theorem 1.28. Let τ = {+, ·, 0, 1}. If Φ is a theory over τ that is
satisfied by fields of arbitrarily large characteristic, then Φ is satisfied
by a field of characteristic 0.
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Proof. For every n > 0 let ψn be the sentence over τ that says that the
sum 1 + · · ·+ 1 with n summands is different from 0. We may assume
that Φ contains the axioms of field theory.

Consider the theory Φ ∪ {ψn : n ∈ ω}. If Φ0 ⊆ Φ ∪ {ψn : n ∈ ω}
is finite, then there is m > 0 such that Φ0 ⊆ Φ ∪ {ψn : n < m}.
But since Φ is satisfied by fields of arbitrarily large characteristic, the
theory Φ ∪ {ψn : n < m} has a model. It follows that Φ0 has a model.

By the Compactness Theorem, Φ∪{ψn : n ∈ N} has a model, which
is a field of characteristic 0. �

This theorem in particular shows that fields of positive characteristic
cannot be axiomatized in first order logic.

Exercise 1.29. Show that if a sentence ϕ holds for every field of char-
acteristic 0, then there is p > 0 such that ϕ holds in every field of
characteristic at least p.

1.7. Elementary substructures.

Definition 1.30. Let B be a τ -structure and let A be a substructure
of B. A τ -formula ϕ(x1, . . . , xn) is absolute between A and B iff for
all a1, . . . , an ∈ A,

A |= ϕ(a1, . . . , an) ⇔ B |= ϕ(a1, . . . , an).

A is an elementary substructure (or an elementary submodel)
of B (A 4 B) if every τ -formula is absolute between A and B.

Two τ -structures are elementary equivalent if they satisfy the
same sentences over τ . We write A ≡ B if two structures A and B are
elementary equivalent.

Lemma 1.31 (Tarski-Vaught Criterion). Let A be a substructure of B.
Then A 4 B iff for every τ -formula ϕ(x, y1, . . . , yn) and all a1, . . . , an ∈
A,

(1) if there is a ∈ B such that B |= ϕ(a, a1, . . . , an), then
there is a ∈ A such that B |= ϕ(a, a1, . . . , an).

Proof. Clearly, if A 4 B, then for all formulas ϕ(x, y1, . . . , yn) and all
a1, . . . , an ∈ A we have (1).

Now suppose for all formulas ϕ(x, y1, . . . , yn) and all a1, . . . , an ∈ A
we have (1). Since A is a substructure of B, every atomic formula is
absolute between A and B. Also, it is easily checked that the class of
absolute formulas is closed under negation and disjunction.

Now assume that ϕ(x, y1, . . . , yn) is absolute between A and B and
let a1, . . . , an ∈ A. Suppose that A |= (∃xϕ)(a1, . . . , an). Let a ∈ A
be such that A |= ϕ(a, a1, . . . , an). By the absoluteness of ϕ, B |=
ϕ(a, a1, . . . , an) and thus B |= (∃xϕ)(a1, . . . , an).

On the other hand, if B |= (∃xϕ)(a1, . . . , an), then by (1), there
is a ∈ A such that B |= ϕ(a, a1, . . . , an). By the absoluteness of ϕ,
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A |= ϕ(a, a1, . . . , an). It follows that A |= (∃xϕ)(a1, . . . , an), showing
that ∃xϕ is absolute between A and B. �

Theorem 1.32 (Downward Löwenheim-Skolem Theorem). Let κ be
an infinite cardinal and let τ be a vocabulary of size at most κ. Then
for every structure B and every set X ⊆ B of size at most κ there is
an elementary substructure A of B such that X ⊆ A and |A| ≤ κ.

Proof. Let X ⊆ B be a set of size at most κ. For each formula
ϕ(x, y1, . . . , yn) we define a function fϕ : Bn → B as follows: for all
b1, . . . , bn ∈ B with B |= (∃xϕ)(b1, . . . , bn) choose an element a ∈ B
such that B |= ϕ(a, b1, . . . , bn) and let fϕ(b1, . . . , bn) = a. If B 6|=
(∃xϕ)(b1, . . . , bn), then let fϕ(b1, . . . , bn) be an arbitrary element of B.
The functions fϕ are Skolem functions.

We now define a sequence (Xn)n∈N of subsets of B. Let X0 be a
nonempty subset of B of size at most κ such that X ⊆ X0. If Xm has
been defined, let

Xm+1 = Xm ∪ {fϕ(b1, . . . , bn) : b1, . . . , bn ∈ Xn

and ϕ(x, y1, . . . , yn) is a τ -formula}.
Let A =

⋃
m∈NXm.

Now, whenever ϕ(x, y1, . . . , yn) is a τ -formula and a1, . . . , an ∈ A,
then for some m ∈ N, a1, . . . , an ∈ Xm and therefore

fϕ(a1, . . . , an) ∈ Xm+1 ⊆ A.

It follows that A is closed under all the Skolem functions.
Clearly, for every n-ary function symbol f ∈ τ and all b1, . . . , bn ∈

B, B |= ∃x(x = f(b1, . . . , bn)). Let ϕ(x, y1, . . . , yn) be the formula
x = f(y1, . . . , yn). Then fϕ = fB. Since A is closed under all the
Skolem functions, for every n-ary function symbol f ∈ τ , A is closed
under fB. Also, for every constant symbol c ∈ τ and every a ∈ A,
fc=x(a) = cB and thus cB ∈ A. This shows that A is the underlying set
of a substructure A of B.

We now apply the Tarski-Vaught Criterion to show that A 4 B.
Let ϕ(x, y1, . . . , yn) be a τ -formula and let a1, . . . , an ∈ A be such that
B |= (∃xϕ)(a1, . . . , an). Let a = fϕ(a1, . . . , an). By the choice of A,
a ∈ A. By the choice of fϕ, B |= ϕ(a, a1, . . . , an). Hence by the Tarski-
Vaught Criterion, A 4 B. �

Exercise 1.33. Q = (Q,+, ·, 0, 1) is a substructure ofR = (R,+, ·, 0, 1).
Show that Q is not an elementary substructure of R.

Observe that by the Löwenheim-Skolem Theorem, R has a countable
elementary submodel that contains all rational numbers. We will see
later that (Q, <) is an elementary submodel of (R, <)

Theorem 1.34 (Upward Löwenheim-Skolem Theorem, weak version).
Let Φ be a theory that has an infinite model. Then Φ has arbitrarily
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large models. In particular, for every infinite τ -structure A there are
arbitrarily large τ -structures that are elementary equivalent to A.

Proof. Let Φ be a theory that has an infinite model. Let I be any set.
For each i ∈ I we introduce a new constant symbol ci. Let σ be the
vocabulary obtained by adding the constant symbol ci, i ∈ I, to τ . Let

ΦI = Φ ∪ {ci 6= cj : i, j ∈ I and i 6= j}.
For every finite subset Φ0 of ΦI there is a finite set I0 ⊆ I such that

Φ0 ⊆ Φ ∪ {ci 6= cj : i, j ∈ I0 and i 6= j}. Let A be an infinite model of
Φ. If I0 ⊆ I is finite, choose pairwise distinct interpretations cA′i ∈ A
of the ci, i ∈ I0. This is possible since A is infinite. Now let A′ be the
σ-structure with underlying set is A, in which all the constant symbols,
function symbols and relation symbols of τ are interpreted as in A, in
which the constant symbols ci, i ∈ I0, are interpreted by the respective
cA
′

i , and in which the constant symbols ci, i ∈ I \ I0, are interpreted
arbitrarily.

By the choice of the cA′i , i ∈ I0,
A′ |= Φ ∪ {ci 6= cj : i, j ∈ I0 and i 6= j}.

It follows that every finite subset of Φi has a model. Hence, by the
Compactness Theorem, ΦI has a model B. Since the ci, i ∈ I, have
pairwise distinct interpretations in B, the underlying set B is at least
of size |I|. Since I was arbitrary, this shows that Φ has arbitrarily large
models. �

Notice that for the proof of the Upward Löwenheim-Skolem Theo-
rem it is actually enough to assume that Φ has an infinite model or
arbitrarily large finite models. However, we have already seen that a
theory with arbitrarily large finite models has an infinite model.

It follows from the Upward Löwenheim-Skolem Theorem that there
are arbitrarily large models of the theory of (N, 0, S) and of the the-
ory of (N,+, ·, 0, 1). This shows that the natural numbers cannot be
axiomatized in first order logic up to isomorphism.

On the other hand, if the usual axioms for set theory (ZFC) are
consistent, and we have no reason to believe otherwise, then, by the
Completeness Theorem together with the Löwenheim-Skolem Theo-
rems, there is a countable model of set theory. In this model there are
only countably elements that the model considers to be real numbers,
even though the model itself believes that there are uncountably many
real numbers. But this just means that the notion “countable” of the
model is different from the corresponding notion in the real world, for
instance because the model does not know the bijection between the
countably many real numbers of the model and the natural numbers
of the model that exists in the real world.
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Definition 1.35. Let A and B be τ -structures. Then j : A→ B is an
elementary embedding of A into B if j is an isomorphism from A
onto an elementary substructure of B. In other words, j is an elemen-
tary embedding iff for all formulas ϕ(x1, . . . , xn) and all a1, . . . , an ∈ A
we have

A |= ϕ(a1, . . . , an) ⇔ B |= ϕ(j(a1), . . . , j(an)).

Elementary embeddings play a major role in some areas of set theory
and in nonstandard analysis.

Exercise 1.36. Let A be a τ -structure, I a set and U an ultrafilter
on I. Show that the embedding j of A into the ultrapower AI/U as
defined in Exercise 1.22 is elementary.

Definition 1.37. Let σ and τ be vocabularies such that σ ⊆ τ . If A
is a σ-structure and A′ is a τ -structure on the same underlying set A
such that every symbol in σ has the same interpretation in A as in A′,
then A is the reduct of A′ to σ and A′ is an expansion of A to τ .
We write A = A′ � σ.

Now let A be a τ -structure. For each a ∈ A let ca be a new constant
symbol. Let τA = τ ∪ {ca : a ∈ A}. The diagram of A is the theory

diag(A) = {ϕ(ca1 , . . . , can) : a1, . . . , an ∈ A,
ϕ(x1, . . . , xn) is an atomic formula or the negation

of an atomic formula and A |= ϕ(a1, . . . , an)}.

The elementary diagram of A is the theory

eldiag(A) = {ϕ(ca1 , . . . , can) : a1, . . . , an ∈ A,
ϕ(x1, . . . , xn) is a τ -formula and A |= ϕ(a1, . . . , an)}.

Observe that eldiag(A) is a complete theory in the sense that for
every τA-sentence ϕ either ϕ ∈ eldiag(A) or ¬ϕ ∈ eldiag(A).

Exercise 1.38. Let A be a τ -structure. Show that for every τA-
structure B with B |= diag(A), the reduct B � τ has a substructure
that is isomorphic to A.

Lemma 1.39. Let A be a τ -structure. If B is a model of eldiag(A),
then the map e : A→ B; a 7→ cBa is an elementary embedding of A into
B � τ .

Proof. Let ϕ(x1, . . . , xn) be a τ -formula and a1, . . . , an ∈ A. Then
A |= ϕ(a1, . . . , an) iff ϕ(ca1 , . . . , can) ∈ eldiag(A) iff B |= ϕ(ca1 , . . . , can)
iff

B � τ |= ϕ(e(a1), . . . , e(an)).

This shows that e is an elementary embedding. �
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Corollary 1.40 (Upward Löwenheim-Skolem Theorem, strong ver-
sion). Let A be an infinite τ -structure. Then there are arbitrarily large
τ -structures B such that A elementarily embeds into B.
Proof. Interpreting every constant ca, a ∈ A, by a itself, we obtain an
expansion of A that is a model of eldiag(A). Hence eldiag(A) has an
infinite model. By the weak version of the Upward Löwenheim-Skolem
Theorem, eldiag(A) has arbitrarily large models and by Lemma 1.39,
A elementarily embeds into the reduct of any model of eldiag(A) to
τ . �

Corollary 1.41. Let Φ be a theory over a vocabulary τ . Let κ be an
infinite cardinal ≥ |τ |. If Φ has an infinite model, then Φ has a model
of size κ.

Definition 1.42. Let (I,≤) be a partial order, i.e., let ≤ be reflexive
(∀i(i ≤ i)), transitive (∀i, j, k((i ≤ j ∧ j ≤ k) → i ≤ k)) and anti-
symmetric (∀i, j((i ≤ j ∧ j ≤ i)→ i = j)). Then (I,≤) is directed if
for all i, j ∈ I there is k ∈ I such that i ≤ k and j ≤ k.

A family (Ai)i∈I together with a family (eij)i,j∈I∧i≤j is an elemen-
tary directed system if for all i, j ∈ I with i ≤ j, eij is an elemen-
tary embedding of Ai into Aj and for all i, j, k ∈ I with i ≤ j ≤ k,
ejk ◦ eij = eik.

If E = ((Ai)i∈I , (eij)i,j∈I∧i≤j) is an elementary directed system, then a
τ -structure A together with a family (ei)i∈I is the limit of the system
E if for all i ∈ I, ei is an elementary embedding of Ai into A such
that for all j ∈ I with i ≤ j we have ei = ej ◦ eij and moreover,
A = {ei(a) : i ∈ I and a ∈ Ai}.

The definition of an elementary directed system sounds more com-
plicated than it actually is. The next theorem and its proof show that
if E = ((Ai)i∈I , (eij)i,j∈I∧i≤j) is an elementary directed system, we may
assume, without loss of generality, that for all i, j ∈ I with i ≤ j,
Ai 4 Aj and eij is the identity function from Ai to Aj. In this situa-
tion, the underlying set of the limit of E is the union of the Ai, the ei
are again identity functions, and the Ai are elementary submodels of
the limit A.
Theorem 1.43. Every elementary directed system

E = ((Ai)i∈I , (eij)i,j∈I∧i≤j)
over a vocabulary τ has a limit A.
Proof. We may assume that the Ai are pairwise disjoint. Let B =⋃
i∈I Ai. We define an equivalence relation ∼ on B as follows: for

a, b ∈ B let a ∼ b if there are i, j, k ∈ I such that i, j ≤ k a ∈ Ai,
b ∈ Aj and eik(a) = ejk(b), The relation ∼ is symmetric by definition
and reflexive since ≤ is. Showing the transitivity of ∼ requires slightly
more work.
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Let a ∼ b and b ∼ c. Let i0, j0, k0, i1, j1, k1 ∈ I be such that i0, j0 ≤ k0

and i1, j1 ≤ k1 and a ∈ Ai0 and b ∈ Aj0 and b ∈ Ai1 and c ∈ Aj1 and
ei0k0(a) = ej0k0(b) and ei1k1(b) = ej1k1(c). Since the Ai were assumed to
be pairwise disjoint, j0 and i1 are the same. Since I is directed, there
is k ∈ I such that k0, k1 ≤ k. Now

ei0k(a) = ek0k(ei0k0(a)) = ek0k(ej0k0(b))

= ek1k(ei1k1(b)) = ek1k(ej1k1(c)) = ej1k(c)

and therefore a ∼ c.
Now let A be the set B/ ∼ of ∼-equivalence classes. For each i ∈ I

and each a ∈ Ai let ei(a) be the ∼-equivalence class of a. By the
definition of ∼, for all i, j ∈ I with i ≤ j and for all a ∈ Ai and b ∈ Aj
with eij(a) = b we have ei(a) = ej(b) and thus ei = ej ◦ eij. Clearly,

A = {ei(a) : i ∈ I and a ∈ Ai}.

We now define the interpretations of the symbol in τ in A.
If c ∈ τ is a constant symbol, for every i ∈ I we have cAi ∈ Ai.

Given i, j ∈ I, there is k ∈ I such that i, j ≤ k. Since eik and ejk
are elementary embeddings, eik(cAi) = cAk = ejk(c

Aj) and therefore
cAi ∼ cAj . Let cA be the ∼-equivalence class of cAi for an arbitrary
i ∈ I. By the previous argument, cA is well defined.

Now let R ∈ τ be an n-ary relation symbol. Let a1, . . . , an ∈ B.
The am are representatives of equivalence classes in A. Each am is an
element of some Aim . Since I is directed, there is j ∈ I such that
i1, . . . , in ≤ j. Now let

(ei1(a1), . . . , ein(an)) ∈ RA ⇔ (ei1j(a1), . . . , einj(an)) ∈ RAj .

RA is well defined since I is directed and the eij are elementary em-
beddings.

Finally, let f ∈ τ be an n-ary function symbol. Let a1, . . . , an ∈ A
and choose i1, . . . , in, j ∈ I as in the definition of the interpretation of
a relation symbol. Now let

fA(ei1(a1), . . . , ein(an)) = ej(f
Aj(ei1j(a1), . . . , einj(an))).

Again, fA is well defined by the directedness of I and since the eij are
elementary embeddings.

This finishes the definition of the structure A. We have to show that
the ei, i ∈ I, are elementary embeddings. We use the same induction
on the complexity of formulas as in the proof of the Tarski-Vaught
Criterion. Again, the only nontrivial case is the case of an existential
formula.

So let ϕ(x, y1, . . . , yn) be a formula. Assume that for all i ∈ I and
a, b1, . . . , bn ∈ Ai we have

Ai |= ϕ(a, b1, . . . , bn) ⇔ A |= ϕ(ei(a), ei(b1), . . . , ei(bn)).
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Let i ∈ I, b1, . . . , bn ∈ Ai and suppose that Ai |= (∃xϕ)(b1, . . . , bn).
Choose a ∈ Ai such that A |= ϕ(a, b1, . . . , bn). By our assumption,

A |= ϕ(ei(a), ei(b1), . . . , ei(bn))

and hence
A |= (∃xϕ)(ei(b1), . . . , ei(bn)).

Now suppose that
A |= (∃xϕ)(ei(b1), . . . , ei(bn)).

We show that Ai |= (∃xϕ)(b1, . . . , bn). Let a ∈ A be such that
A |= ϕ(a, ei(b1), . . . , ei(bn)).

Choose j ∈ I and b ∈ Aj such that a = ej(b). Let k ∈ I be such that
i, j ≤ k. By our assumption,

Ak |= ϕ(ejk(b), eik(b1), . . . , eik(bn))

and thus
Ak |= (∃xϕ)(eik(b1), . . . , eik(bn)).

Since eik is an elementary embedding, Ai |= (∃xϕ)(b1, . . . , bn). This
finishes the proof of the theorem. �

Corollary 1.44 (Tarksi’s Elementary Chain Theorem). Let (I,≤) be
a linear order. For each i ∈ I let Ai be a τ -structure and assume that
for all i, j ∈ I with i ≤ j we have Ai 4 Aj. Let A =

⋃
i∈I Ai and

define a τ -structure A on A in the natural way. Then for every i ∈ I,
Ai 4 A.

Exercise 1.45 (For people with some background in set theory). Let
κ be an uncountable cardinal. Recall that κ is regular if it is not the
supremum of a set A ⊆ κ of size < κ. A set C ⊆ κ is unbounded in
κ if for all α < κ there is β ∈ C such that α ≤ β. C ⊆ κ is closed if
for all S ⊆ C, supS = κ or supS ∈ C. C is club if C is both closed
and unbounded in κ.

Let τ be a countable vocabulary and let κ be an uncountable regular
cardinal. Show that for every τ -structure A on κ, the set of α < κ such
that α carries an elementary substructure of A is club in κ.

Exercise 1.46. Let τ be a countable vocabulary and let A be a τ -
structure. Suppose the underlying set A of A is of some regular size κ.
If (Aα)α<κ is an increasing sequence of subsets of A such that all Aα
are of size < κ and for all limit ordinals β < κ, Aβ =

⋃
α<β Aα. Show

that there is α < κ such that Aα carries an elementary substructure of
A.
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2. Properties of first order theories

2.1. Categoricity and completeness.

Definition 2.1. Let Φ be a first order theory over a vocabulary τ . The
deductive closure of Φ is the theory

Ded(Φ) = {ϕ : Φ |= ϕ}.
Φ is deductively closed if Φ = Ded(Φ). Φ is complete if it is
consistent and for all sentences ϕ, either ϕ ∈ Φ or ¬ϕ ∈ Φ.

Now let κ be a cardinal. A theory Φ is κ-categorical if up to
isomorphism, it has exactly one model of size κ.

Observe that every complete theory is deductively closed and for
every τ -structure A, Th(A) is complete.

Lemma 2.2. Let Φ be a deductively closed theory having only infinite
models. If Φ is κ-categorical for some κ ≥ |τ |, then Φ is complete.

Proof. Since Φ has a model of size κ, it is consistent. Assume that
Φ is not complete. Then there is a sentence ϕ such that ϕ,¬ϕ 6∈ Φ.
Note that since ϕ 6∈ Φ and Φ is deductively closed, Φ 6|= ϕ. It follows
that Φ ∪ {¬ϕ} is has a model. By the Löwenheim-Skolem Theorem,
Φ ∪ {¬ϕ} has a model A of size κ. Similarly, Φ ∪ {ϕ} has a model B
of size κ. Since A and B are not elementarily equivalent, they cannot
be isomorphic, contradicting the κ-categoricity of Φ. �

Example 2.3. Let τ be the empty vocabulary. The only relation that
we can talk about using this vocabulary is equality. For each n ∈ N let
ϕn be the sentence over τ that says that there are at least n dinstinct
elements. Now Φ = Ded({ϕn : n ∈ N}) is the theory of infinite sets.
Φ is κ-categorical for every infinite κ. By Lemma 2.2, Φ is complete.

Example 2.4. Let τ be the vocabulary of vector spaces over Q. Let Φ
be the deductive closure of the set of axioms for vector spaces over Q
together with an axiom that says that the vector space has at least two
elements. A Q-vector space V is countable if and only if its dimension
is at least 1 and at most ℵ0. If V is uncountable, then the dimension
of V is equal to the cardinality. It follows that Φ is not ℵ0-categorical
but κ-categorical for all uncountable κ. Again by Lemma 2.2, Φ is
complete.

Our next example of a complete theory is the theory of dense
linear orders without endpoints. The vocabulary consists of a
single binary relation symbol ≤. We freely use x < y as an abbreviation
for x ≤ y ∧ x 6= y. The theory is the deductive closure of the set
consisting of the following axioms:
(DO1) ∀x(x ≤ x) (Reflexivity)
(DO2) ∀x∀y∀z((x ≤ y ∧ y ≤ z)→ x ≤ z) (Transitivity)
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(DO3) ∀x∀y((x ≤ y ∧ y ≤ x)→ x = y) (Anti-symmetry)
(DO4) ∀x∀y(x ≤ y ∨ y ≤ x) (Linearity)
(DO5) ∀x∀z(x < z → ∃y(x < y ∧ y < z)) (Density)
(DO6) ∀x∃y∃z(y < x ∧ x < z) (No endpoints)

Clearly, both (Q,≤) and (R,≤) are dense linear orders without end-
points.

Theorem 2.5. The theory of dense linear orders without endpoints is
ℵ0-categorical.

Proof. Let (A,≤) and (B,≤) be countable linear orders without end-
points. Let (an)n∈N and (bn)n∈N be 1-1 enumerations of A and B, re-
spectively. We will recursively define 1-1 sequences (pn)n∈N and (qn)n∈N
in A, respectively B such that the map that assigns qn to pn is an iso-
morphism between (A,≤) and (B,≤).

Let p0 = a0 and q0 = b0. Suppose for some n ∈ N we have defined
pm and qm for all m ≤ n. If n even, let pn+1 be the a` ∈ A\{p0, . . . , pn}
with the smallest index. We distinguish three cases:

(1) For all m ≤ n, pn+1 < pm.
(2) For all m ≤ n, pn+1 > pm.
(3) Not (1) or (2).

In case (1) choose qn+1 ∈ B such that qn+1 < qm for all m ≤ n. This
is possible since (B,≤) has no endpoints. Similarly, in case (2) we
can choose qn+1 ∈ B such that qn+1 > qm for all m ≤ n. In case
(3) there are m0,m1 ≤ m such that pm0 is the ≤-maximal element of
{pm : m ≤ n, pm < pn+1} and pm1 is the ≤-minimal element of {pm :
m ≤ n, pm > pn+1}. Choose qn+1 ∈ B such that qm0 < qn+1 < qm1 .
This is possible since (B,≤) is a dense linear order.

If n is odd, we choose qn+1 to be the b` ∈ B \ {q0, . . . , qn} with the
smallest index. We choose pn+1 exactly as we chose qn+1 in the case of
even n, with the roles of A and B, a and b, and p and q switched. The
finishes the definition of the sequences (pn)n∈N and (qn)n∈N. It is easily
verified that the map f : A → B; pn 7→ qn is an isomorphism between
the structures (A,≤) and (B,≤). �

This way of constructing an isomorphism between two structures is
known as back-and-forth argument.

Corollary 2.6. The theory of dense linear orders without endpoints is
complete.

Note that the theory of dense linear orders without endpoints is not
2ℵ0-categorical, i.e., not |R|-categorical. (R,≤) and (R \ {0},≤) are
both dense linear orders without endpoints, but they are not isomorphic
since one is Dedekind complete (every bounded subset has a least upper
bound) and the other is not. In fact, the theory is not κ-categorical for
any uncountable κ.
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Exercise 2.7. Show that every countable linear order embeds into
(Q,≤).

Exercise 2.8. Let (L,≤) be a linear order. Then D ⊆ L is dense in L
if every nonempty open interval of L contains an element of D. (L,≤)
is separable if it has a countable dense subset. Show that a linear
order is separable iff in embeds into lexicographically ordered product
R× {0, 1}.

Note that the theory of dense linear orders without endpoints is not
2ℵ0-categorical, i.e., not |R|-categorical. (R,≤) and (R \ {0},≤) are
both dense linear orders without endpoints, but they are not isomorphic
since one is Dedekind complete (every bounded subset has a least upper
bound) and the other is not. In fact, we have the following theorem:

Theorem 2.9. The theory of dense linear orders without endpoints
is not κ-categorical for any uncountable κ. Moreover, for each un-
countable κ, there are 2κ pairwise non-isomorphic dense linear orders
without endpoints of size κ.

Proof. The main building blocks are the following two dense linear
orders without endpoints: One is the familiar linear order Q = (Q,≤).
In order to define the second linear order, let X ⊆ (0, 1) be a set of
size ℵ1. By the Downward Löwenheim-Skolem Theorem there is a set
P ⊆ R of size ℵ1 such that X ⊆ P and

(P, 0, 1,+, ·) 4 (R, 0, 1,+, ·).

P = (P,≤) is the second linear order we will use.
P has the following property: For all p, q ∈ P with p < q, the set
{r ∈ P : p < r < q} is of size ℵ1. We say that P is ℵ1-dense.

This can be seen as follows: Since (P, 0, 1,+, ·) is an elementary
substructure of (R, 0, 1,+, ·), 1 ∈ P and P is closed under addition,
multiplication and division. It follows that Q ⊆ P . Now, if p, q ∈ P
are such that p < q, then there is a affine linear map f over Q that
is 1-1 and maps (0, 1) into (p, q). Since Q ⊆ P and since P is closed
under addition and multiplikation, f [X] ⊆ P . Now f [X] is a subset of
{r ∈ P : p < r < q} of size ℵ1. This shows the ℵ1-density of P .

From P and Q we construct two new linear orders, A0 and A1. A0

simply consists of one copy of Q followed by a copy of P . A1 consists of
a copy of Q followed by ω1 copies of P , where all elements of the α-th
copy of P are smaller than all elements of the β-th copy if α < β < ω1.

Now, for each function f : κ → {0, 1} we define a structure Bf as
follows: Bf is the union of κ disjoint linear orders. For α < κ, the α-th
linear order is a copy of Af(α). Again, if α < β < κ, then all elements
of the α-th linear order are below all elements of the β-th linear order.
It is clear that each Bf is a dense linear order without endpoints of size
κ.
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We finish the proof of the theorem by showing that for f, g : κ →
{0, 1} with f 6= g we have Bf 6∼= Bg. A subset of a linear order is
convex if with any two points it contains all the points between the
two. The copies of Q that have been used in the construction of Bf and
Bg are maximal countably infinite convex subsets of Bf , respectively
Bg. Now suppose that f 6= g and Bf ∼= Bg. Let i : Bf → Bg be an
isomorphism. An easy transfinite induction shows that for each α < κ,
i maps the α-th maximal countably infinite subset of Bf to the α-th
maximal countably infinite subset of Bg. Now let α < κ be minimal
with f(α) 6= g(α). Without loss of generality we may assume that
f(α) = 0 and g(α) = 1.

Then i has maps the copy ofA0 in Bf that contains the α-th maximal
countably infinite subset of Bf to the copy of A1 in Bg that contains
the α-th maximal countably infinite subset of Bg. It follows that i
restricts to an isomorphism between a copy of A0 and a copy of A1.
But A0 6∼= A1, a contradiction. �

We now produce an example of a complete theory that is not κ-
categorical for any infinite κ. The easiest way to come up with a
complete theory is to consider the theory of a stucture.

Let A be the structure whose underlying set is

A = (N× {0}) ∪ (N× {1})
and that has a single binary relation ≤ defined as follows: for all
(a, i), (b, j) ∈ A let (a, i) ≤ (b, j) if i = j = 0 and a ≤ b in N. In
other words, A is the disjoint union of a copy of (N,≤) and a countably
infinite set with no relation between the two or within the countably
infinite set.

Theorem 2.10. Let A be the structure defined above. Then Th(A) is
a complete theory that is not κ-categorical for any infinite κ.

Proof. First observe that the two parts of the structure are definable.
Let ϕ(x) be the formula ∃y(x < y). Now for all a ∈ A we have
A |= ϕ(a) iff a is of the form (n, 0) for some n ∈ N. Given a model B
of Th(A), we call {b ∈ B : B |= ϕ(b)} the N-part of the structure B.

We first show that Th(A) is not ℵ0-categorical. We introduce a new
constant symbol c. For each n ∈ N let ψn be the sentence

ϕ(c) ∧ ∃x0 . . . ∃xn(x0 < x1 ∧ · · · ∧ xn−1 < xn ∧ xn < c).

Intuitively, ψn says that c is in the N-part of the structure and is at
least n+ 1.

Interpreting c in A by a pair (n, 0) with sufficiently large n, we see
that every finite subset of Th(A) ∪ {ψn : n ∈ N} has a model. Hence,
by the Compactness Theorem, Th(A) ∪ {ψn : n ∈ N} has a model B.
By the Downward Löwenheim-Skolem Theorem, we may assume that
B is countable. Since B |= ϕ(c) and in B the interpretation of c has
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infinitely many elements below it, A 6∼= B. Note that it is unnecessary
to use ϕ(c) in the formulas ψn since once cB is comparable with any
other element of B, it has to be in the N-part of B.

To see that Th(A) is not κ-categorical for any uncountable κ, we
argue as follows. Let κ be an uncountable cardinal. We add pairwise
distinct constant symbols cα and dα, α < κ, to our vocabulary. Now
consider the theory

Φ = Th(A) ∪ {ϕ(cα) ∧ ¬ϕ(dα) : α < κ}
∪ {cα 6= cβ : α < β < κ} ∪ {dα 6= dβ : α < β < κ}.

As in the proof of the Upward Löwenheim-Skolem Theorem, it is easily
checked that every subset of Φ has a model. Hence Φ has a model
by the Compactness Theorem. By the Downward Löwenheim-Skolem
Theorem, Φ has a model B of size κ.

We use the same notation B for the structure B and for its reduct
to the original vocabulary {≤}. Clearly, both the N-part of B and its
complement are of size κ. Now consider the structure B′ that consists
of the N-part of B and a countably infinite subset of the complement
of the N-part. A straight forward application of the Tarski-Vaught-
Criterion shows that B′ is an elementary substructure of B.

Since the N-part of B′ is the same as of B, B′ is of size κ. But since
the complement of the N-part of B′ is only countable, B 6∼= B′. Hence
Th(A) is not κ-categorical. �

We provide another example of a theory that is ℵ0-categorical and
not κ-categorical for any uncountable κ.

Definition 2.11. Recall that a graph G is a set V of vertices with
a binary relation E that is irreflexive and symmetric. E is the edge
relation of G and two vertices v, w ∈ V are connected by an edge if
they are related by E. The unordered pairs {x, y}, (x, y) ∈ E, are the
edges of G

A graph G on a countably infinite set V of vertices is random if
for all finite disjoint sets A,B ⊆ V there is a vertex v ∈ V \ (A ∪ B)
such that all w ∈ A are connected to v by an edge and no u ∈ B is
connected to v. For all n,m ∈ N with n,m > 0 let ϕn,m be the sentence

∀x1 . . . ∀xn∀y1 . . . ∀yn(“{x1, . . . , xn} and {y1, . . . , ym} are disjoint”
→ ∃z(z 6= x1 ∧ · · · ∧ z 6= xn ∧ z 6= y1 ∧ · · · ∧ z 6= ym

∧ E(x1, z) ∧ · · · ∧ E(xn, z) ∧ · · · ∧ ¬E(y1, z) ∧ · · · ∧ ¬E(ym, z)).

If n = 0 and m > 0 let ϕn,m be the sentence

∀y1 . . . ∀ym∃z(¬E(y1, z) ∧ · · · ∧ ¬E(ym, z)).

If n > 0 and m = 0 let ϕn,m be the sentence

∀x1 . . . ∀xn∃z(E(x1, z) ∧ · · · ∧ E(xn, z)).
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Let ϕ0,0 be the sentence ∃z(z = z). The ϕn,m are extension axioms.

Clearly, a countable structure (V,E), where E is a binary relation,
is a random graph iff it satisfies the theory

Φ = {∀x(¬E(x, x)),∀x∀y(E(x, y)↔ E(y, x))} ∪ {ϕn,m : n,m ∈ N}.

Theorem 2.12. Up to isomorphism, there is exactly one random graph.
In other words, Φ is ℵ0-categorical.

Proof. We first prove the existence of the random graph. Let V = N.
Let (An)n∈N and (Bn)n∈N be two sequences of finite subsets of N such
that for all finite sets A,B ⊆ N there are infinitely many n ∈ N such
that An = A and Bn = B. Let

F = {(n,m) : n < m, Am and Bm are
disjoint subsets of {0, . . . ,m− 1}, and n ∈ Am}

Let E = {(n,m) : (n,m) ∈ F or (m,n) ∈ F}. Clearly, (V,E) is a
countably infinite graph. To show that it is random, let A,B ⊆ V be
disjoint and finite. By the choice of the sequences (An)n∈N and (Bn)n∈N
there is m > max(A ∪ B) such that Am = A and Bm = B. Now the
vertex m is connected to all vertices in A and not connected to the
vertices in B.

Next we show that any two random graphs are isomorphic. We use
a back-and-forth argument. Let Gi = (Vi, Ei) be a random graph for
i ∈ {0, 1}. Let (an)n∈N be a 1-1 enumeration of V0 and let (bn)n∈N
be a 1-1 enumeration of V1. We construct two sequences (pn)n∈N and
(qn)n∈N as follows:

Let p0 = a0 and q0 = b0. If we have chosen pm and qm for all m < n,
we distinguish two cases. If n is even, let pn be the a` ∈ V0 \{pm : m <
n} of the smallest index. Let A = {m : m < n and (pm, pn) ∈ E0} and
B = {m : m < n and (pm, pn) 6∈ E0}. Choose qn ∈ B \ {qm : m < n}
such that qn is connected to all vertices in {qm : m ∈ A} and not
connected to any vertex in {qm : m ∈ B}.

If n is odd, find pn and qn as above, but after switching the roles of p
and q, (V0, E0) and (V1, E1) and of a and b, respectively. Now f : V0 →
V1; pn 7→ qn is an isomorphism between (V0, E0) and (V1, E1). �

Because of this theorem, we refer to the random graph rather than
a random graph.

Corollary 2.13. Ded(Φrandom) is complete.

Exercise 2.14. Show that every countable graph embeds into the ran-
dom graph.

Theorem 2.15. The theory of the random graph is not ℵ1-categorical.
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Proof. We construct two non-isomorphic models of Φrandom of size ℵ1.
We construct two strictly increasing sequences (Gα)α<ω1 and (Hα)α<ω1

of countable graphs. Recall that for a graph G, by V (G) we denote the
set of vertices of G and by E(G) we denote the edge relation of G.

We start by letting G0 be the countably infinite graph with no edges
and H0 the countably infinite complete graph, i.e., a countably infinite
graph in which any two vertices are connected by an edge. If δ < ω1 is
a limit ordinal, let

Gδ =

(⋃
α<δ

V (Gα),
⋃
α<δ

E(Gα)

)
and

Hδ =

(⋃
α<δ

V (Hα),
⋃
α<δ

E(Hα)

)
.

Now suppose thatGα andHα have been constructed for some α < ω1.
Let (An)n∈N be an enumeration of all finite subsets of V (Gα). Let
(Bn)n∈N be an enumeration of all finite subsets of V (Hα). Choose
pairwise distinct an and bn, n ∈ N, outside V (Gα), respectively V (Hα).
Let V (Gα+1) = V (Gα) ∪ {an : n ∈ N} and V (Hα+1) = V (Hα) ∪
{bn : n ∈ N}. Choose E(Gα+1) such that E(Gα+1) � V (Gα) = E(Gα)
and for every n ∈ N, an is connected to every element of An and not
connected to any element of V (Gα) \ An. Choose E(Hα+1) such that
E(Hα+1) � V (Hα) = E(Hα) and for every n ∈ N, bn is connected to
every element of V (Hα) \Bn and not connected to any element of Bn.
Finally, let

G =

( ⋃
α<ω1

V (Gα),
⋃
α<ω1

E(Gα)

)
and

H =

( ⋃
α<ω1

V (Hα),
⋃
α<ω1

E(Hα)

)
.

We claim that G and H are both models of Φrandom, but not isomor-
phic. It is clear that G and H are graphs. If A and B are disjoint
finite subsets of V (G), then there is α < ω1 with A ∪B ⊆ V (Gα). For
the construction of Gα+1 we chose an enumeration (An)n∈N of all finite
subsets of V (Gα). Let n ∈ N be such that A = An. We chose some an
such that an ∈ V (Gα+1) \V (Gα) and an is connected to all elements of
An but not connected to any element of V (Gα)\An. Since B is disjoint
from A, an is not connected to any element of B. This shows that G
satisfies all the ψn,m. A symmetric argument shows that H satisfies all
the ψn,m.

We now show that G and H are not isomorphic. Let f : V (G) →
V (H) be a bijection. We show that f cannot be an isomorphism.
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We choose a strictly increasing sequence (αn)n∈N of ordinals < ω1 as
follows:

Let α0 = 0. If n is even, let αn+1 be such that f [V (Gαn ] ⊆ V (Hαn+1).
This is possible since V (Gαn) is countable and f is onto. If n is odd,
let αn+1 be such that f−1[V (Hαn)] ⊆ V (Gαn+1). This is possible since
V (Hαn) is countable and f is 1-1. Finally let α = sup{αn : n ∈ N}.

Now we have f [V (Gα)] = V (Hα). By the construction of G, every
vertex in V (G) \ V (Gα) is connected to only finitely many vertices
in V (Gα). By the construction of H, every vertex V (H) \ V (Hα) is
connected to infinitely many vertices in V (Hα). It follows that f is not
an isomorphism. �

Exercise 2.16. Show that the graph H in the proof of the previous
theorem has an uncountable complete subgraph while G does not. This
also shows that G and H are not isomorphic.

Exercise 2.17. Show that every infinite graph can be embedded into
a graph of the same size that is a model Φrandom.

Notice that the proof of Theorem 2.15 easily generalizes to all un-
countable cardinals κ. Hence Φrandom is not κ-categorical for any κ >
ℵ0. This is not by accident. We have the following theorem.

Theorem 2.18 (Morley). If a countable first order theory is κ-categorical
for some uncountable κ, then is is κ-categorical for all uncountable κ.

We mention another important family of complete theories that are
not ℵ0-categorical but κ-categorical for all uncountable κ. For each
prime number p let ΦACFp be the theory of algebraically closed fields
of characteristic p. ΦACFp is the deductive closure of the axioms of
field theory together with the axiom saying that the sum of p 1’s is
zero together with the infinitely many axioms that say that that every
polynomial that is not constant has a zero. The following axiom says
that every polynomial of degree n > 0 has a zero:

∀x0 . . . ∀xn(xn 6= 0→ ∃y(xny
n + · · ·+ x1y + x0 = 0))

Here yk is an abbreviation for the product y · · · · · y with k factors.
Similarly, let ΦACF0 be the theory of algebraically closed fields

of characteristic zero, i.e., the deductive closure of the axioms of
field theory together with the infinitely many axioms that say that the
field is not of characteristic p for any prime number p together with
the infinitely many axioms that say that every polynomial that is not
constant has a zero.

Theorem 2.19. If p is either 0 or a prime number, then ΦACFp is not
ℵ0-categorical but κ-categorical for all uncountable κ. In particular,
ΦACFp is complete.
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Proof. Two algebraically closed fields of characteristic p are isomorphic
iff they have the same transcendence degree over their minimal subfield,
the prime subfield. If a field is uncountable, then its cardinality
equals the transcendence degree over the prime subfield. �
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2.2. Quantifier elimination.

Definition 2.20. Let Φ be a first order theory over a vocabulary τ .
Two τ -formulas ϕ(x1, . . . , xn) and ψ(x1, . . . , xn) are Φ-equivalent if

Φ |= ϕ(x1, . . . , xn)↔ ψ(x1, . . . , xn).

Φ has quantifier elimination if for every τ -formula is Φ-equivalent
to a quantifier-free formula. A τ -structure A has quantifier elimination
if the theory Th(A) does.

Lemma 2.21. A first order theory Φ has quantifier elimination iff for
every quantifier-free formula ϕ(x, y1, . . . , yn) there is a quantifier-free
formula ψ(y1, . . . , yn) such that

T |= ∃xϕ(x, y1, . . . , yn)↔ ψ(y1, . . . , yn).

Proof. By induction on the complexity of formulas. �

Lemma 2.22. Let τ be a finite vocabulary without function symbols,
i.e., a finite relational vocabulary. A complete theory Φ over τ
has quantifier elimination iff for every model A of Φ and all n-tupels
(a1, . . . , an), (b1, . . . , bn) ∈ An the following holds:

If (a1, . . . , an) and (b1, . . . , bn) satisfy the same atomic formulas in
A, then for every an+1 ∈ A there is bn+1 ∈ A such that (a1, . . . , an+1)
and (b1, . . . , bn+1) satisfy the same atomic formulas in A.

Proof. We start with a couple observations. Let A be a τ -structure.
Since τ is finite and relational, there are only finitely many atomic for-
mulas in the variables x1, . . . , xn. Moreover, if two n-tuples (a1, . . . , an)
and (b1, . . . , bn) satisfy the same atomic formulas in a structure A, then
they satisfy the same quantifier free formulas. Low let a1, . . . , an ∈ A.
Let χ(a1,...,an)(x1, . . . , xn) be the conjunction of all formulas ψ(x1, . . . , xn)
that are atomic or negations of atomic formulas and such that A |=
ψ(a1, . . . , an). Now an n-tuple (b1, . . . , bn) ∈ An satisfies the same
atomic formulas as (a1, . . . , an) iff

A |= χ(a1,...,an)(b1, . . . , bn).

We now start the actual proof of the lemma. First assume that Φ
has quantifier elimination. Let A be a model of Φ and suppose that the
n-tuples (a1, . . . , an) and (b1, . . . , bn) satisfy the same atomic formulas
in A. Let an+1 ∈ A. Now

A |= χ(a1,...,an+1)(a1, . . . , an+1)

and therefore

A |= (∃xn+1χ(a1,...,an+1))(a1, . . . , an).

Since Φ has quantifier elimination, ∃xn+1χ(a1,...,an+1)) is Φ-equivalent
to a quantifier free formula ϕ(x1, . . . , xn). But since (a1, . . . , an) and
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(b1, . . . , bn) satisfy the same atomic formulas, they satisfy the same
quantifier-free formulas. It follows that

A |= ϕ(b1, . . . , bn)

and therefore

A |= (∃xn+1χ(a1,...,an+1))(b1, . . . , bn).

Let bn+1 ∈ A be such that

A |= χ(a1,...,an+1)(b1, . . . , bn+1).

Now (b1, . . . , bn+1) satisfy the same atomic formulas.
On the other hand, suppose that for some model A of Φ we have

that if (a1, . . . , an) and (b1, . . . , bn) satisfy the same atomic formulas in
A, then for every an+1 ∈ A there is bn+1 ∈ A such that (a1, . . . , an+1)
and (b1, . . . , bn+1) satisfy the same atomic formulas in A.

Let ϕ(x1, . . . , xn+1) be a quantifier-free formula over τ . Let (a1, . . . , an) ∈
An be such that

A |= (∃xn+1ϕ)(a1, . . . , an).

Let an+1 ∈ A be such that A |= ϕ(a1, . . . , an+1). Now let (b1, . . . , bn) be
an n-tuple that satisfies the same atomic formulas in A as (a1, . . . , an).
By our assumption, there is bn+1 such that (b1, . . . , bn+1) satisfies the
same atomic formulas as (a1, . . . , an+1). In other words,

A |= (∃xn+1ϕ)(a1, . . . , an)→ (∃xn+1ϕ)(b1, . . . , bn).

It follows that whether or not A satisfies (∃xn+1ϕ)(a1, . . . , an) only
depends on the atomic formulas that (a1, . . . , an) satisfies. Let

X = {χ(a1,...,an)(x1, . . . , xn) : a1, . . . , an ∈ A
and A |= (∃xn+1ϕ)(a1, . . . , an)}.

Since there are only finitely many atomic formulas in the variables
x1, . . . , xn+1, the set X is finite. Let

ψ(x1, . . . , xn) =
∨
χ∈X

χ(x1, . . . , xn).

Since the validity of (∃xn+1ϕ)(a1, . . . , an) in A only depends on the
atomic formulas satisfied by (a1, . . . , an), we have

A |= ∀x1, . . . , xn(∃xn+1ϕ↔ ψ).

Since Φ is a complete theory,

Φ |= ∀x1, . . . , xn(∃xn+1ϕ↔ ψ)

and therefore (∃xn+1ϕ)(x1, . . . , xn) and ψ(x1, . . . , xn) are Φ-equivalent.
By Lemma 2.21, this shows that Φ has quantifier elimination. �
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Remark 2.23. Note that even though the previous lemma was formu-
lated as “a complete theory Φ has quantifier elimination iff for every
model A of Φ ...”, the proof of the lemma shows that the formulation
“a complete theory Φ has quantifier elimination iff for some model A
of Φ ...” works as well.

Corollary 2.24. The theory of dense linear orders without endpoints
has quantifier elimination.

Proof. We use Lemma 2.22 and the remark following it. We consider
the structure Q = (Q,≤). Let (a1, . . . , an) and (b1, . . . , bn) be n-tuples
satisfying the same atomic formulas in Q. We may assume that a1 ≤
· · · ≤ an. In this case b1 ≤ · · · ≤ bn. Now let an+1 ∈ Q. We have
to find bn+1 ∈ Q such that (a1, . . . , an+1) and (b1, . . . , bn+1) satisfy the
same atomic formulas in Q.

If there is j ∈ {1, . . . , n} such that an+1 = aj, choose bn+1 = bj. If
an+1 < a1, choose bn+1 ∈ Q such that bn+1 < b1. If an+1 > an, choose
bn+1 > bn. If for some j ∈ {1, . . . , n − 1}, aj < an+1 < aj+1, choose
bn+1 ∈ Q such that bj < bn+1 < bj+1. In any case, (a1, . . . , an+1) and
(b1, . . . , bn+1) satisfy the same atomic formulas in Q. �

Corollary 2.25. Φrandom has quantifier elimination.

Proof. The argument is almost the same as in the proof of Corollary
2.24. Let G = (V,E) be the random graph. Let (a1, . . . , an) and
(b1, . . . , bn) be n-tuples satisfying the same atomic formulas in G. Now
let an+1 ∈ V . We have to find bn+1 ∈ V such that (a1, . . . , an+1) and
(b1, . . . , bn+1) satisfy the same atomic formulas in G.

If there is j ∈ {1, . . . , n} such that an+1 = aj, choose bn+1 = bj.
Otherwise choose bn+1 different from all the bj, j ∈ {1, . . . , n}, and
such that for all j ∈ {1, . . . , n}, bn+1 is connected to bj iff an+1 is
connected to aj. This is possible by the properties of the random
graph. Now clearly, (a1, . . . , an+1) and (b1, . . . , bn+1) satisfy the same
atomic formulas in G. �

Note that both the theory of dense linear orders without endpoints
and Φrandom are ℵ0-categorical. It turns out that there is a connection
between categoricity and quantifier elemination.

Theorem 2.26. Let Φ be a complete theory in a finite relational vo-
cabulary τ that has infinite models and quantifier elimination. Then Φ
is ℵ0-categorical.

Proof. Let A and B be countable models of Φ. We prove that A and B
are isomorphic by using a back-and-forth argument. Let (an)n∈N and
(bn)n∈N be 1-1 enumerations of A and B, respectively. We construct
enumerations (pn)n∈N and (qn)n∈N of A and B, respectively, such that
for all n, (p0, . . . , pn) and (q0, . . . , qn) satisfy the same atomic formulas,
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the first n-tuple in A, the second in B. If we can accomplish this, then
the function that maps pn to qn is an isomorphism between A and B.

Let p0 = a0. Since τ is finite and relational, there are only finitely
many atomic formulas in the variable x1 and we can define the formula
χa0(x0) as in the proof of Lemma 2.22. Now A |= ∃x0χa0 . Since Φ is
complete, ∃x0χa0 ∈ Φ. Hence B |= ∃x0χa0 . Let q0 ∈ B be such that
B |= χa0(q0).

Now assume that n is even and we have already chosen p0, . . . , pn ∈ A
and q0, . . . , qn ∈ B such that (p0, . . . , pn) and (q0, . . . , qn) satisfy the
same atomic formulas in the respective structures. Let pn+1 be the
a` ∈ A \ {p0, . . . , pn} of minimal index. Now

A |= χ(p0,...,pn+1)(p0, . . . , pn+1)

and therefore

A |= (∃xn+1χ(p0,...,pn+1))(p0, . . . , pn).

By quantifier elimination,

(∃xn+1χ(p0,...,pn+1))(x0, . . . , xn)

is Φ-equivalent to a quantifier-free formula ϕ(x0, . . . , xn). Now

A |= ϕ(p0, . . . , pn).

Since if (p0, . . . , pn) and (q1, . . . , qn) satisfy the same atomic formulas,
they satisfy the same quantifier-free formulas,

B |= ϕ(q0, . . . , qn).

It follows that

B |= (∃xn+1χ(p0,...,pn+1))(q0, . . . , qn).

Choose qn+1 ∈ B such that

B |= χ(p0,...,pn+1))(q0, . . . , qn+1).

If n is odd, proceed in the same way with the roles of A and B
switched. By the usual argument, pn 7→ qn defines an isomorphism
between A and B. �

Lemma 2.27. Let τ be any vocabulary and let Φ be a complete theory
over τ . Then the following are equivalent:

(1) Φ has quantifier elimination.
(2) For every τ -structure C, if f : C → M and g : C → M

are embeddings of C into a model M of Φ, then for every
quantifier-free formula τ -formula ϕ(x, y1, . . . , yn) and every n-
tuple (c1, . . . , cn) ∈ Cn we have

M |= (∃xϕ)(f(c1), . . . , f(cn)) ⇔ M |= (∃xϕ)(g(c1), . . . , g(cn)).
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Proof. (1)⇒(2): Let C be a τ -structure and f, g : C →M embeddings
into a model of Φ. Let (c1, . . . , cn) ∈ Cn. Let a = (a1, . . . , an) =
(f(c1), . . . , f(cn)) and b = (b1, . . . , bn) = (g(c1), . . . , g(cn)). Now a and
b satisfy the same atomic formulas.

Let ϕ(x, y1, . . . , yn) be a quantifier-free formula. Suppose

M |= (∃xϕ)(a).

Since Φ has quantifier elimination, (∃xϕ)(y1, . . . , yn) is Φ-equivalent
to a quantifier-free formula ψ(y1, . . . , yn). Since the n-tuples a and b
satisfy the same atomic formulas, they satisfy the same quantifier-free
formulas. It follows that

M |= (∃xϕ)(a) ⇔ M |= ψ(a) ⇔ M |= ψ(b) ⇔ M |= (∃xϕ)(b).

(2)⇒(1): Assume that Φ does not have quantifier elimination. By
Lemma 2.21, there is a quantifier-free formula ϕ(x, y1, . . . , yn) such that
the formula (∃xϕ)(y1, . . . , yn) is not Φ-equivalent to a quantifier-free
formula.

Claim 2.28. There is a modelM of Φ and there are n-tuples

(a1, . . . , an), (b1, . . . , bn) ∈Mn

that satisfy the same atomic formulas such thatM |= (∃xϕ)(a1, . . . , an)
andM |= ¬(∃xϕ)(b1, . . . , bn).

For the proof of the claim, we add new constant symbols d1, . . . , dn
and e1, . . . , en to the vocabulary τ . Consider the theory

Ψ = Φ ∪ {ψ(d1, . . . , dn)↔ ψ(e1, . . . , en) : ψ is an atomic formula}
∪ {(∃xϕ)(d1, . . . , dn),¬(∃xϕ)(e1, . . . , en)}.

We show that every finite subset Ψ0 of Ψ has a model. Let N be a
model of Φ and let Ψ0 ⊆ Ψ be finite. Then there is a finite set X of
atomic formulas ψ(y1, . . . , yn) such that

Ψ0 ⊆ Φ ∪ {ψ(d1, . . . , dn)↔ ψ(e1, . . . , en) : ψ ∈ X}
∪ {(∃xϕ)(d1, . . . , dn),¬(∃xϕ)(e1, . . . , en)}.

Consider now the Boolean algebra B of subsets of Nn that is generated
by the sets

{(a1, . . . , an) : N |= ψ(a1, . . . , an)},
ψ ∈ X. Note that B is finite. A set A ∈ B is an atom if it is non-empty
and does not have a proper subset in B. Since Φ is complete, Φ knows
that (∃xϕ)(d1, . . . , dn) is not equivalent to a quantifier-free formula and
hence not equivalent to a Boolean combination of formulas in X. It
follows that the set

P = {(a1, . . . , an) ∈ Nn : N |= (∃xϕ)(a1, . . . , an)}
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is not an element of B. But this implies that P is not the union of a
set of atoms of B. Hence, there is an atom A ∈ B containing n-tuples
(a1, . . . , an) and (b1, . . . , bn) with (a1, . . . , an) ∈ P and (b1, . . . , bn) 6∈ P .
Since A is an atom of B, (a1, . . . , an) and (b1, . . . , bn) satisfy the same
formulas in X. Interpreting di by ai and ei by bi for all i ∈ {1, . . . , n},
we obtain a model of Ψ0.

It follows that Ψ has a model M. For all i ∈ {1, . . . , n} let ai =
dMi and bi = ei. Now M and the two n-tuples (a1, . . . , an) and
(b1, . . . , bn) work for the claim. Let Ma be the substructure of M
generated by a1, . . . , an and let Mb be the substructure generated
by b1, . . . , bn. Since the two n-tuples satisfy the same atomic for-
mulas, the two substructures are isomorphic by an isomorphism that
maps each ai, i ∈ {1, . . . , n}, to the corresponding bi. However, since
M |= (∃xϕ)(a1, . . . , an) andM |= ¬(∃xϕ)(b1, . . . , bn), the condition in
the lemma fails. �

Exercise 2.29. Show that a complete theory Φ over an arbitrary vo-
cabulary τ has quantifier elimination iff the following condition holds:

(3) For every model M of T and every n ∈ N, if (a1, . . . , an) and
(b1, . . . , bn) satisfy the same atomic formulas in M, then for
every an+1 ∈M there are an elementary extension N ofM and
an element bn+1 ∈ N such that (a1, . . . , an+1) and (b1, . . . , bn+1)
satisfy the same atomic formulas in N .

Hint: Use compactness, elementary diagrams and the previous lemma.

We are now ready to show that the theory of algebraically closed
fields of characteristic p, p = 0 or p a prime number, has quantifier
elimination.

Theorem 2.30. Let p be a prime number or p = 0. Then ΦACFp has
quantifier elimination.

Proof. We use condition (2) of Lemma 2.27. Let M be a model of
ΦACFp , let C be a τ -structure and let g, f : C → M be embeddings.
Let (c1, . . . , cn) ∈ C. Let a = (a1, . . . , an) = (f(c1), . . . , f(cn)) and let
b = (b1, . . . , bn) = (g(c1), . . . , g(cn)). We have to show that for each
quantifier-free formula ϕ(x, y1, . . . , yn) we have

M |= (∃xϕ)(a) ⇔ M |= (∃xϕ)(b).

Assume that M |= (∃xϕ)(a) and let A = {a1, . . . , an}. Let R be the
subring of M generated by A. Every element of R can be written as
a term in the elements of A. Note that R ⊆ f [C]. Also note that
an element a ∈ M is algebraic over R iff it is algebraic over the field
generated by R. Now let a ∈M be such thatM |= ϕ(a1, . . . , an, an+1).
Case 1. There is a polynomial p(x) with coefficients in R such that
p(a) = 0.
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In this case we take p(X) to be a polynomial of minimal degree with
coefficients in R such that p(a) = 0. We write the coefficients of p
as terms in the elements of A. Now replace every ai that appears in
p(X) by the corresponding bi in order to obtain the polynomial q(X).
Let S be the ring generated by b1, . . . , bn. Since the (a1, . . . , an) and
(b1, . . . , bn) satisfy the same atomic formulas, there is an isomorphism
between R and S that maps ai to bi for each i ∈ {1, . . . , n}. This
isomorphism extends to the fields generated by the two rings and maps
the coefficients of p(X) to the coefficients of q(X).

Since M is algebraically closed, there is a root b ∈ M of q(X).
Since p(X) does not factor into polynomials of smaller degrees over R,
q(X) does not factor into polynomials of smaller degrees over S. It
follows that there is an isomorphism from the field generated by R and
a to the field generated by S and b that maps a to b and each ai to
the corresponding bi. It follows that (a, a1, . . . , an) and (b, b1, . . . , bn)
satisfy the same atomic formulas. Since ϕ is quantifier-free, it follows
thatM |= ϕ(b, b1, . . . , bn), showingM |= (∃xϕ)(b).
Case 2. a is not algebraic over R.

Since a and b satisfy the same atomic formulas, the rings generated
by a1, . . . , an and by b1, . . . , bn are isomorphic. The fields generated
by these rings are just the quotient fields of the respective rings and
therefore are isomorphic, too. It follows that the fields generated by
a1, . . . , an and by b1, . . . , bn have the same (finite) transcendence degree
over their prime subfield, which is also the prime subfield ofM.

Since a is transcendent over the field generated by a1, . . . , an, the
transcendence degree of M over the prime subfield is at least one
greater than the transcendence degree of the field generated by a1, . . . , an
and hence at least one greater than the transcendence degree of the
field generated by b1, . . . , bn. It follows that there is some b ∈ M that
is transcendent over the field generated by b1, . . . , bn.

Now there is an isomorphism from the field generated by R and a
to the field generated by S and b that maps a to b and each ai to
the corresponding bi. It follows that (a, a1, . . . , an) and (b, b1, . . . , bn)
satisfy the same atomic formulas. Since ϕ is quantifier-free, M |=
ϕ(b, b1, . . . , bn) and henceM |= (∃xϕ)(b). �

Definition 2.31. A theory Φ over τ is model-complete if for all
modelsM of Φ and every substructure N ofM that is a model of Φ,
N is an elementary substructure ofM.

Lemma 2.32. Let Φ be a complete theory with quantifier elimination.
Then Φ is model-complete.

Proof. Let M be a model of Φ and let N be a substructure of M.
By the Tarski-Vaught Criterion, it is enough to check that for every
formula formula ϕ(x, y1, . . . , yn) and parameters b1, . . . , bn ∈ N , if there
is a ∈ M such that M |= ϕ(a, b1, . . . , bn), then there is b ∈ N such



38 STEFAN GESCHKE

thatM |= ϕ(b, b1, . . . , bn). Since Φ has quantifier elimination, we may
assume that ϕ is quantifier-free.

Since Φ has quantifier-elimination, (∃xϕ)(y1, . . . , yn) is Φ-equivalent
to a quantifier-free formula ψ(y1, . . . , yn). Since N is a substructure
of M, (b1, . . . , bn) satisfies the same atomic formulas, and therefore
the same quantifier-free formulas, in N and in M. It follows that
N |= ψ(b1, . . . , bn) and hence N |= (∃ϕx)(b1, . . . , bn). It follows that
there is b ∈ N such that N |= ϕ(b, b1, . . . , bn). Since ϕ(x, y1, . . . , yn) is
quantifier-free, we haveM |= ϕ(b, b1, . . . , bn). �

Corollary 2.33. For p = 0 or p a prime number, ΦACFp is model-
complete.

The model-completeness of ΦACFp has an important consequence for
algebraic geometry, Hilbert’s Nullstellensatz. Before we can prove the
Nullstellensatz, we need a basic fact about rings of polynomials.

Theorem 2.34 (Hilbert’s Basissatz). Let K be a field and consider
the polynomial ring K[X1, . . . , Xn] in n variables over K. Then every
ideal of K[X1, . . . , Xn] is generated by finitely many elements.

Proof. Observe that K[X1, . . . , Xn+1] = K[X1, . . . Xn][Xn+1]. A com-
mutative ring isNoetherian if every ideal is generated by finitely many
elements. We show by induction that K[X1, . . . , Xn] is Noetherian for
every n. It is enough to show that for every commutative Noetherian
ring R, the polynomial ring R[X] is Noetherian.

So, assume that R is commutative and Noetherian. Let I be an
ideal of R[X]. Suppose that I is not fintely generated. Then we can
recursively construct a sequence (fi)i∈N of polynomials in I such that
for every n ∈ N, fn is not in the ideal generated by {fi : i < n} and
such that fn is of minimal degree among all the polynomials in I that
are not in the ideal generated by {fi : i < n}. Note that the sequence
of degrees of the fn is non-decreasing.

For each i ∈ N let ai be the leading coefficient of fi. Let n ∈ ω be
minimal such that the ideal generated by {ai : i < n} is equal to the
ideal generated by {ai : i ≤ n}. Such an n exists since R is Noetherian.
Then there are u0, . . . , un−1 ∈ R such that an = u0a0 + · · ·+ un−1an−1.

Now consider the polynomial

g = u0f0X
k0 + · · ·+ un−1fn−1X

kn−1

where ki = deg(fn)−deg(fi). Since (deg(fi))i∈N is non-decreasing, each
ki is ≥ 0 and therefore g is indeed a polynomial. The degree of g is
the same as the degree of fn. Also, the leading coefficient of g is an.
It follows that the degree of fn − g is strictly smaller than the degree
of fn. Also, since fn = g + (fn − g), fn − g is in I but not in the ideal
generated by {fi : i < n}, contradicting the choice of fn. �
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Theorem 2.35 (Hilbert’s Nullstellensatz). Let F be an algebraically
closed field. If I is an ideal in F [X1, . . . , Xn] such that 1 6∈ I, then
there is (a1, . . . , an) ∈ F n such that for all f ∈ I, f(a1, . . . , an) = 0.

Proof. By the Basissatz, there are polynomials f1, . . . , fk ∈ I such that
I is the ideal generated by f1, . . . , fk. By Zorn’s Lemma there is a
maximal ideal P ⊆ F [X1, . . . , Xn] such that I ⊆ P and 1 6∈ P . Since P
is a maximal ideal, G = F [X1, . . . , Xn]/P is a field. We can consider F
as a subfield of G via the embedding a 7→ a+P . For each i ∈ {1, . . . , k},

fi(X1 + P, . . . , Xn + P ) = fi(X1, . . . , Xn) + P = 0 + P.

Let H be the algebraic closure of G. Now

H |= ∃x1 . . . ∃xn(f1(x1, . . . , xn) = 0 ∧ · · · ∧ fk(x1, . . . , xn) = 0).

Since F is an algebraically closed field and a substructure of H, we
have F 4 H. Therefore

F |= ∃x1 . . . ∃xn(f1(x1, . . . , xn) = 0 ∧ · · · ∧ fk(x1, . . . , xn) = 0).

Hence, the f1, . . . , fk have a common zero (a1, . . . , an) ∈ F n. Since I
is generated by f1, . . . , fn, for all f ∈ I we have f(a1, . . . , an) = 0. �

Exercise 2.36. Let M be a τ -structure for some vocabulary τ . A
set S ⊆ Mn is definable (with parameters) if there are a τ -formula
ϕ(x1, . . . , xn, y1, . . . , ym) and b1, . . . , bm ∈M such that

S = {(a1, . . . , an) ∈Mn :M |= ϕ(a1, . . . , an, b1, . . . , bm)}.
Let K be an algebraically closed field. The zero-set of a polynomial

f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] is the set

{(a1, . . . , an) ∈ Kn : f(a1, . . . , an) = 0}.
Show that the definable subsets of Kn are precisely the Boolean com-
binations of zero-sets.

The theory of algebraically closed fields of characteristic 0 is the the-
ory of (C, 0, 1,+, ·). Let us have a look at the theory of (R, 0, 1,+, ·,≤),
the theory of real closed fields.

Definition 2.37. Consider the vocabulary τ = {0, 1,+, ·,≤}. A τ -
structure (R, 0, 1,+, ·,≤) is an ordered ring if (R, 0, 1,+, ·) is a ring
(with unit), ≤ is a linear order on R, and moreover, the following two
axioms are satisfied:
(OR1) ∀x∀y∀z(x ≤ y → x+ z ≤ y + z)
(OR2) ∀x∀y∀z((x ≤ y ∧ 0 ≤ z)→ xz ≤ yz)

An ordered field is an ordered ring (F, 0, 1,+, ·,≤) such that (F, 0, 1,+, ·)
is a field.

A field (F, 0, 1,+, ·) is real closed if there is an order ≤ on F which
turns F into an ordered field such that every polynomial of odd degree
with coefficients in F has at least one zero in F and such that every
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element ≥ 0 has a square root. Let ΦRCF be the theory of real closed
fields, i.e., the deductive closure of the axioms for real closed fields.

It is clear that (R, 0, 1,+, ·,≤) is a real closed field. However, it is not
clear that the theory of real closed fields is complete. In other words,
there could be real closed fields that are not elementarily equivalent
to the ordered field of real numbers. However, this is not the case.
Since the theory of real closed fields is not κ-categorical for any κ,
our previous strategy for showing the completeness of a first order
theory fails. Another way of showing completeness is to show quantifier
elimination first.

Lemma 2.38. If ΦRCF has elimination of quantifiers, then it is com-
plete.

Proof. Assume ΦRCF has elimination of quantifiers. Let ϕ be a sen-
tence. The only constants in the vocabulary are 0 and 1. If ϕ is equiv-
alent to a quantifier-free formula, then it is equivalent to a Boolean
combination of atomic formulas without variables. But ΦRCF decides
the validity of every atomic formula without variables. Hence ΦRCF is
complete. �

In order to prove quantifier elimination of the theory of real closed
fields, we use a version of Lemma 2.27 that works for theories that have
not been shown to be complete yet.

Lemma 2.39. Let τ be any vocabulary and let Φ be a theory over τ .
Then the following are equivalent:

(1) Φ has quantifier elimination.
(2) For every τ -structure C, if f : C → M and g : C → N are

embeddings of C into a models M and N of Φ, then for every
quantifier-free formula τ -formula ϕ(x, y1, . . . , yn) and every n-
tuple (c1, . . . , cn) ∈ Cn we have

M |= (∃xϕ)(f(c1), . . . , f(cn)) ⇔ N |= (∃xϕ)(g(c1), . . . , g(cn)).

Proof. (1)⇒(2): This is practically the same as the proof of (1)⇒(2)
in Lemma 2.27.

(2)⇒(1): Let ϕ(x, y1, . . . , yn) be a quantifier-free τ -formula. Con-
sider the vocabulary σ = τ ∪{c1, . . . , cn} where c1, . . . , cn are new con-
stant symbols. IfM and N are two σ-structures that are models of Φ
and satisfy the same quantifier-free σ-sentences, then the substructures
generated by cM1 , . . . , cMn and cN1 , . . . , cNn are isomorphic and hence, by
(2),

M |= (∃xϕ)(cM1 , . . . , cMn ) ⇔ N |= (∃xϕ)(cN1 , . . . , c
N
n ).

If no σ-structure that is a model of Φ is a model (∃xϕ)(c1, . . . , cn),
then (∃xϕ)(y1, . . . , yn) is equivalent to a (quantifier-free) formula that
is always false. Now, letM be a σ-structure that is a model of Φ and
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(∃xϕ)(c1, . . . , cn). Let Ψ(M) be the set of quantifier-free σ-sentences
that hold in M. Since every model of Φ ∪ Ψ(M) is also a model of
(∃xϕ)(c1, . . . , cn) by (2), Φ ∪ Ψ(M) |= (∃xϕ)(c1, . . . , cn). It follows
that Φ together with a finite subset of Ψ(M) implies (∃xϕ)(c1, . . . , cn).
Since Ψ(M) is closed under finite conjunctions, Φ together with a single
sentence ψM ∈ Ψ(M) implies (∃xϕ)(c1, . . . , cn).

Now consider the theory

Φ ∪ {(∃xϕ)(c1, . . . , cn)} ∪ {¬ψM :M |= (∃xϕ)(c1, . . . , cn)}.

By the choice of the ψM, this theory is inconsistent. Hence there are

ψ1, . . . , ψk ∈ {¬ψM :M |= (∃xϕ)(c1, . . . , cn)}

such that

Φ ∪ {¬ψ1 ∧ · · · ∧ ¬ψk} |= ¬(∃xϕ)(c1, . . . , cn).

It follows that (∃xϕ)(c1, . . . , cn) is Φ-equivalent to ψ1∨ · · · ∨ψk. Hence
(∃xϕ)(y1, . . . , yn) is equivalent to a quantifier-free τ -formula. �

Exercise 2.40. In the proof of the previous lemma we implicitly used
(and proved) the separation lemma:

Let τ be a vocabulary. Let Ψ be a collection of τ -sentences that is
closed under conjunction and disjunction and contains ⊥, the sentence
that is always false, and >, the sentence that is always true. Let Φ0

and Φ1 be theories over τ . Suppose for every modelM of Φ0 and every
model N of Φ1 there is ψ ∈ Ψ such thatM |= ψ and N |= ¬ψ.

Show that there is ψ ∈ Ψ such that Φ0 |= ψ and Φ1 |= ¬ψ.

We collect some facts about real closed fields.

Definition 2.41. Let (F, 0, 1,+, ·,≤) be an ordered field. Then an
ordered field (K, 0, 1,+, ·,≤) is the real closure of F if F is a sub-
structure of K, K is a real closed field, and every element of K is
algebraic over F .

Lemma 2.42. a) If (R, 0, 1,+, ·,≤) is an ordered ring, then the order
on R extends to the field of fractions of R, turning the field of fractions
into an ordered field.

b) A field (F, 0, 1,+, ·) is formally real if −1 is not the sum of
squares. If F is formally real and a ∈ F , then F has an order ≤ with
a < 0 iff a is not a sum of squares, i.e., not of the form b2

1 + · · · + b2
n

for some b1, . . . , bn ∈ F .
b) If (F, 0, 1,+, ·) is a real closed field, then the order witnessing this

is unique and can be defined by letting a ≤ b if there is c ∈ F such that
b = a+ c2.

c) Every ordered field has a real closure. The real closure is unique up
to isomorphism over the base field. (The Artin-Schreier Theorem.)
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d) If (R, 0, 1,+, ·,≤) is a real closed field, then adjoining a zero of
the polynomial X2+1 to (R, 0, 1,+, ·) yields an algebraically closed field
R[
√
−1].

e) If (R, 0, 1,+, ·,≤) is a real closed field, then every polynomial in
R[X] is the product of linear and quadratic factors of the form (X −
d)2 + e with e > 0.

Theorem 2.43. The theory of real closed fields has quantifier elimi-
nation and is complete.

Proof. Completeness follows from quantifier elimination by Lemma 2.38.
We use Lemma 2.39 to show quantifier elimination. Let C be an or-
dered ring and let f : C → M and g : C → N be embeddings into
real closed fields M and N . Let ϕ(x, y1, . . . , yn) be a quantifier-free
formula and c1, . . . , cn ∈ C. Let

a = (a1, . . . , an) = (f(c1), . . . , f(cn))

and
b = (b1, . . . , bn) = (g(c1), . . . , g(cn)).

Assume
M |= (∃xϕ)(a).

Choose a ∈ M such that M |= ϕ(a, a). Let F0 be the real closed
subfield of M generated by a1, . . . , an and let F1 be the real closed
subfield of N generated by b1, . . . , bn. Clearly, F0 is isomorphic to F1

via an isomorphism h that maps f(c) to g(c) for every c ∈ C..
If a ∈ F0, then N |= ϕ(h(a), b). If a 6∈ F0, then a is transcendent

over F0 and F0(a) is isomorphic to the field F0(X) of fractions of F0[X].
Let F `

0 denote the set of elements of F0 that are less than a and let F r
0

denote the set of elements of F0 that are greater than a. Let F `
1 = h[F `

0 ]
and F r

1 = h[F r
0 ]. Since ordered fields are dense linear orders, there is

an elementary extension of N ′ of N that contains an element b which
is greater than all elements of F `

1 and smaller than all elements of F r
1 .

Since F1 is real closed an b 6∈ F1, b is transcendent over F1. Hence,
algebraically h has a unique extension h : F0(a) → F1(b) that maps a
to b. We have to show that h is order-preserving.

It is enough to show that h is order-preserving on F0[a]. But for this
it is actually enough to show that h preserves positivity on F0[a]. Let
p(X) ∈ F0[X]. Since F0 is real closed, p(X) factors as

p(X) = α ·
∏
i<n

(X − ci) ·
∏
j<m

((X − dj)2 + ej),

with positive ej’s. Now, whether or not p(a) is positive depends on
how many of the factors α, a− c0, ... , a− cn−1 are negative. Whether
or not h(p(a)) is positive depends in the same way on the factors h(α),
h(a) − h(c0), ... , h(a) − h(cn−1). But since h preserves the order on
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F0 and, by the choice of b, also between the elements of F0 and a, it
follows that p(a) is positive iff h(p(a)) is.

Since ϕ is quantifier-free, b witnesses (∃xϕ)(b) in N ′. Since N ′ is an
elementary extension of N , N |= (∃xϕ)(b). This shows condition (2)
in Lemma 2.39. Hence the theory of real closed fields has quantifier
elimination. �

Since the theory of real closed fields has quantifier elimination, it
is model-complete. We use this fact to prove a theorem that settles
Hilbert’s 17th problem.

Theorem 2.44. Let K be a real closed field. A polynomial f in the
polynomial ring K[X1, . . . , Xn] is a sum of squares

f = g2
1 + · · ·+ g2

k

of rational functions g1, . . . , gk ∈ K(X1, . . . , Xk) iff for all a1, . . . , an ∈
K,

f(a1, . . . , an) ≥ 0.

Proof. Assume that

f =
g2

1

h2
1

+ · · ·+ g2
k

h2
k

for polynomials g1, . . . , gk, h1, . . . , hk ∈ K[X1, . . . , Xn], where the hj
are not constantly 0. Let D be the set of all a ∈ Kn such that for all
j ∈ {1, . . . , k}, hj(a) 6= 0. The set D is dense and open in Kn. For
each a ∈ D we have f(a) ≥ 0. The set of all a ∈ Kn with f(a) ≥ 0 is
closed and includes D. It follows that f(a) ≥ 0 for all a ∈ Kn.

Now suppose that f is not a sum of squares. K is an ordered field
and −1 is negative with respect to the order on K. In particular, −1
is not a sum of squares in K. By the argument at the beginning of the
proof, −1 is not a sum of squares in K(X1, . . . , Xn) either. It follows
that K(X1, . . . , Xn) is an ordered field.

Since f is not a sum of squares in this field, there is an order with
respect to which f is negative. Since the order of K is unique, the
order on K(X1, . . . , Xn) extends the order on K. Let L be the real
closure of K(X1, . . . , Xn). Since f(X1, . . . , Xn) < 0 in L, we have

L |= ∃x1 . . . ∃xn(f(x1, . . . , xn) < 0).

Since the theory of real closed fields is model-complete, K 4 L and
therefore

K |= ∃x1 . . . ∃xn(f(x1, . . . , xn) < 0).

It follows that there are a1, . . . , an ∈ K such that f(a1, . . . , an) < 0. �
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2.3. Strongly minimal theories.

Definition 2.45. Let τ be a vocabulary andM a τ -structure. Let B
be a subset of M . A set A ⊆ Mn is definable over B if there are a
τ -formula ϕ(x1, . . . , xn, y1, . . . , ym) and parameters b1, . . . , bm ∈ B such
that

A = {(a1, . . . , an) ∈Mn :M |= ϕ(a1, . . . , an, b1, . . . , bm)}.

A subset A ofMn is definable if it is definable overM . A is definable
without parameters if A is definable over the empty set.

Lemma 2.46. If A ⊆Mn is finite or cofinite, then A is definable.

Proof. If A is finite, say

A = {(ai1, . . . , ain) : i < m},

then A is defined by the formula∨
i<m

(x1 = yi1 ∧ · · · ∧ xn = yin)

using the parameters ai1, . . . , ain, i < m.
Clearly, the complement of every definable set is definable. �

Definition 2.47. An infinite structureM is minimal if all definable
subsets of M are finite or cofinite. M is strongly minimal if every
structure N that is elementarily equivalent to M is minimal. A the-
ory is strongly minimal if all of its models are infinite and strongly
minimal.

Observe that in the definition of minimality only definable subsets
of M , and not of Mn are considered. The reason for this is that for
every infinite structure M the set {(a, a) : a ∈ M} is definable and
both infinite and coinfinite.

Example 2.48. a) The structure (Q,≤) is not minimal since for every
q ∈ Q the set {a ∈ Q : a ≤ q} is definable and both infinite and
coinfinite.

b) The random graph is not minimal since for every vertex the set
of neighbors is definable and both infinite and coinfinite.

Lemma 2.49. Let Φ be a theory over τ that has quantifier elimination
and only infinite models. Then Φ is strongly minimal iff for every
model M of Φ the subsets of M defined by atomic formulas are finite
or cofinite.

Proof. Clearly, if Φ is strongly minimal, then for every modelM of Φ,
every subset of M definable by an atomic formula is finite or cofinite.

Now letM be a model of Φ and assume that every subsets of M de-
fined by an atomic formulas is finite or cofinite. Since Φ has quantifier
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elimination, every definable subset of M is definable by a quantifier-
free formula. Every quantifier-free formula is a Boolean combination of
atomic formulas. A straight-forward induction shows that if every set
definable by an atomic formula is finite or cofinite, then every set defin-
able by a Boolean combination of atomic formulas if finite or cofinite.
This shows thatM is minimal. �

Corollary 2.50. The theory of algebraically closed fields of character-
istic p, p = 0 or p a prime number, is strongly minimal.

Proof. The theory has quantifier elimination and hence we can apply
Lemma 4.19. Let M be an algebraically closed field of characteristic
p. The atomic formulas in the language of fields are equations be-
tween polynomials. Every such equation in the variables x, y1, . . . , ym is
equivalent to an equation of the form p(x, y1, . . . , ym) = 0. If b1, . . . , bm
are parameters from M , then the equation p(x, b1, . . . , bm) has only
finitely many solutions a ∈M . It follows that the corresponding defin-
able subset of M is finite. �

Definition 2.51. Let M be a τ -structure and ϕ(x, y1, . . . , yn) a τ -
formula. Let b1, . . . , bn ∈M . Then ϕ(x, b1, . . . , bn) is algebraic if {a ∈
M :M |= ϕ(a, b1, . . . , bn)} is finite. For B ⊆M and a ∈M , a is alge-
braic over B if there are b1, . . . , bn ∈ B and a formula ϕ(x, y1, . . . , yn)
such that ϕ(x, b1, . . . , bn) is algebraic andM |= ϕ(a, b1, . . . , bn).

For B ⊆ M let aclM(B) be the set of all a ∈ M that are algebraic
over B. The set aclM(B) is the algebraic closure of B. A ⊆ M is
algebraically closed if A = aclM(A).

Lemma 2.52. a) Let M be a τ -structure and A,B ⊆ M . Then the
following hold:

(1) A ⊆ aclM(A) (Reflexivity)
(2) If A ⊆ B, then aclM(A) ⊆ aclM(B). (Monotonicity)
(3) aclM(aclM(A)) = aclM(A) (Idempotency)
(4) If a ∈ aclM(A), then a ∈ aclM(A0) for some finite set A0 ⊆ A.

(Finite character)
(5) aclM(A) is the underlying set of a substructure ofM.
c) IfM is minimal, then for all A ⊆M and all b, c ∈M the follwing

holds:
(6) If c ∈ aclM(A∪ {b}) and c 6∈ aclM(A), then b ∈ aclM(A∪ {c}).

(Exchange)

Proof. (1) For every a ∈ A, {a} is defined by x = a and x = a is
algebraic.

(2) Every set definable over A is definable over B. If a is algebraic
over A, then it is an element of a finite set that is definable over A.
This finite set is definable over B and thus a is algebraic over B.

(3) By (1) and (2) we have aclM(A) ⊆ aclM(aclM(A)). Now as-
sume that a is algebraic over aclM(A). Then there are a formula
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ϕ(x, y1, . . . , yn) and b1, . . . , bn ∈ aclM(A) such that ϕ(x, b1, . . . , bn) is
algebraic and M |= ϕ(a, b1, . . . , bn). Let ` ∈ N be the number of dis-
tinct x inM that satisfy ϕ(x, b1, . . . , bn). For each i ∈ {1, . . . , n} choose
ψi(y, z1, . . . , zmi) and ai1, . . . , aimi ∈ A such that ψi(y, ai1, . . . , aimi) is al-
gebraic andM |= ψi(bi, a

i
1, . . . , a

i
mi

).
For every formula χ let ∃=`yχ be the formula that expresses “there

are exactly ` distinct y that satisfy χ”. Now

∃y1 . . . ∃yn

(
ϕ(x, y1, . . . , yn) ∧ ∃=`zϕ(z, y1, . . . , yn)

∧
n∧
i=1

ψ(yi, a
i
1, . . . , a

i
mi

)

)
is algebraic and is satisfied inM by a. Hence a ∈ aclM(A).

(4) This is obvious.
(5) For every constant symbol c, {cM} is definable without param-

eters. Hence cM ∈ aclM(A). If f is a n-ary function symbol and
b1, . . . , bn ∈ aclM(A), then {fM(b1, . . . , bn)} is definable over aclM(A)
and therefore

fM(b1, . . . , bn) ∈ aclM(aclM(A)) = aclM(A).

It follows that aclM(A) is closed under all the functions of M. This
shows (5).

(6) Let c ∈ aclM(A ∪ {b}). Let ϕ(x, y, z1, . . . , zn) be a formula
and a1, . . . , an ∈ A such that ϕ(x, b, a1, . . . , an) is algebraic andM |=
ϕ(c, b, a1, . . . , an). Let k ∈ N be such that ϕ(x, b, a1, . . . , an) is satisfied
by exactly k distinct x in M . If ϕ(c, y, a1, . . . , an) is algebraic, then
b ∈ aclM(A ∪ {c}).

Now assume that ϕ(c, y, a1, . . . , an) is not algebraic. Then by the
minimality ofM, the set

{d ∈M :M |= ϕ(c, d, a1, . . . , an)}

is cofinite, i.e., ϕ(c, y, a1, . . . , an) holds for almost all y in M .
Hence, there is ` ∈ N such that ¬ϕ(c, y, a1, . . . , an) holds for exactly `

distinct y. Since c 6∈ aclM(A), ∃=`y¬ϕ(x, y, a1, . . . , an) holds for almost
all x inM . But this means that for almost all d ∈M , ϕ(d, y, a1, . . . , an)
is satisfied by all but at most ` distinct y in M .

Suppose that there are distinct e1, . . . , e`+1 ∈ M such that for each
i ∈ {1, . . . , `+ 1}, ϕ(x, ei, a1, . . . , an) fails for almost all x in M . Since
finite intersections of cofinite sets are again cofinite, we can conclude
that for almost all x, ϕ(x, ei, a1, . . . , an) fails for all i ∈ {1, . . . , ` + 1},
contradicting the previous statement.

Hence, for all but at most ` distinct e ∈ M , ϕ(x, e, a1, . . . , an) is
satisfied by almost all x in M .
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In particular, ∃=kxϕ(x, y, a1, . . . , an) fails for almost all y. But this
shows that ∃=kxϕ(x, y, a1, . . . , an) is algebraic and therefore

b ∈ aclM(A) ⊆ aclM(A ∪ {c}).
�

Definition 2.53. Let M be a structure and A,C ⊆ M . Then A is
independent over C if for every a ∈ A, a 6∈ aclM((A ∪ C) \ {a}). A
is independent if A is independent over ∅.
B ⊆ A generates A over C iff A ⊆ aclM(B ∪ C). Note that this

is equivalent to aclM(A ∪ C) = aclM(B ∪ C). B generates A iff it
generates A over ∅.
B ⊆ A is a basis for A over C iff B is independent and generates

A over C. B is a basis for A if B is a basis for A over ∅.
Exercise 2.54. Show that the theory of infinite vector spaces over a
fixed field F has quantifier elimination.

Exercise 2.55. Show that the theory of infinite vector spaces over a
fixed field F is strongly minimal. Note that the model theoretic notions
“independent” and “basis” coincide with their counter parts from linear
algebra.

We will now show that minimal structures allow the definition of a
dimension of sets.

Lemma 2.56. Let M be a minimal structure, let C ⊆ M and let
E ⊆ M be finite and independent over C. If F ⊆ M is such that
|E| = |F | and E ⊆ aclM(F ∪ C), then F ⊆ aclM(E ∪ C).

Proof. We prove the lemma by induction on n = |E| = |F |. Let us
start with the following claim:

Claim 2.57. If the lemma holds for n, then whenever E ⊆ M is
finite and independent over C and F ⊆ M is finite and such that
E ⊆ aclM(F ∪ C) and |F | = n, then |E| ≤ n.

For the proof of the claim suppose that |E| > n. Let E ′ ⊆ E be
of size n. Clearly, E ′ ⊆ aclM(F ∪ C). By the lemma for n, F ⊆
aclM(E ′ ∪ C). It follows that E ⊆ aclM(E ′ ∪ C), contradicting the
independence of E. This shows the claim.

Let us return to the proof of the lemma itself. First assume that
n = 1. Let f be the unique element of F and let e be the unique
element of E. Since E = {e} is independent over C, e 6∈ aclM(C). By
(6) of Lemma 2.52 (exchange), f ∈ aclM({e}∪C), i.e., F ⊆ aclM(E∪C)

Now let n > 1 and assume the lemma is true for sets of size less
than n. Let E ⊆ M be independent over C and F ⊆ M such that
n = |E| = |F | and E ⊆ aclM(F ∪ C). We write F = {f1, . . . , fn}.

By the induction hypothesis together with the claim,
E 6⊆ aclM({f2, . . . , fn} ∪ C).
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Hence, there is e1 ∈ E \ aclM({f2, . . . , fn}) ∪ C). By exchange,

f1 ∈ aclM({e1, f2, . . . , fn} ∪ C).

Now suppose that for some k we have

{f1, . . . , fk} ⊆ aclM({e1, . . . , ek, fk+1, . . . , fn} ∪ C)

with pairwise distinct e1, . . . , ek ∈ E. By the induction hypothesis
together with the claim,

E 6⊆ aclM(({e1, . . . , ek, fk+1, . . . , fn} \ {fk+1}) ∪ C).

Let

ek+1 ∈ E \ aclM(({e1, . . . , ek, fk+1, . . . , fn} \ {fk+1}) ∪ C).

Again by exchange,

fk+1 ∈ aclM(({e1, . . . , ek+1, fk+1 . . . , fn} \ {fk+1}) ∪ C).

This process terminates after n steps and we have

f1, . . . , fn ∈ aclM({e1, . . . , en} ∪ C),

finishing the proof of the lemma. �

Corollary 2.58. Let M be a minimal structure and A,C ⊆ M . If A
is generated over C by a finite set, then A has a finite basis over C and
any two bases of A over C are of the same size.

Proof. Suppose A is generated over C by a set of size n. By Claim 2.57,
every set B ⊆ A that is independent over C is of size at most n. Let
B ⊆ A be maximally independent over C. We show that B generates
A over C.

Let a ∈ A. By the choice of B, B ∪ {a} is not independent over C.
Hence we have a ∈ aclM(B ∪ C) or for some b ∈ B, b ∈ aclM((B \
{b}) ∪ {a} ∪ C). In the latter case, by exchange, a ∈ aclM(B ∪ C). It
follows that A ⊆ aclM(B ∪ C). Hence B is a basis for A over C.

Let B′ be another basis for A over C. Since B′ is independent and
B′ ⊆ aclM(B∪C), Lemma 2.57 implies that |B′| ≤ |B|. With the roles
of B and B′ reversed, the same argument yields |B| ≤ |B′|. Hence every
basis for A over C has the same size as B. �

Lemma 2.59. LetM be a minimal structure and A,C ⊆M . Then A
has a basis over C and any two bases for A over C have the same size.

Proof. By Zorn’s Lemma, there is a maximal set B ⊆ A that is indepen-
dent over C. Note that the proof of this fact uses the finite character of
our notion of independence (a set is independent iff every finite subset
is) and hence of the algebraic closure. By the same argument as in the
corollary above, B is a basis for A over C.

If A has a finite basis over C, then the lemma follows from the
previous corollary. Now let B and B′ be two infinite bases for A over
C and assume |B| < |B′|. We have B′ ⊆ aclM(B ∪ C). By the finite
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character of the algebraic closure, for every b ∈ B′ there is a finite set
Fb ⊆ B such that b ∈ aclM(Fb∪C). Since B is infinite, B has |B| finite
subsets. Since |B′| > |B|, there is a finite set F ⊆ B such that Fb = F
for infinitely many b ∈ B′. But now aclM(F ∪ C) contains an infinite
set that is independent over C, contradicting Claim 2.57. �

Exercise 2.60. LetM be a minimal structure and A,C ⊆ M . Show
that the following are equivalent for all B ⊆ A:

(1) B is a basis for A over C.
(2) B is a maximal independent set over C.
(3) B is a minimal set that generates A over C.

Definition 2.61. LetM be a minimal structure and A,C ⊆M . The
dimension of A over C is the size dim(A/C) of a basis of A over C.
The dimension of A is the size dim(A) of a basis of A over ∅.

Lemma 2.62. LetM and N be elementary equivalent minimal struc-
tures, and A ⊆ M and C ⊆ N . If dim(A) = dim(C), then aclM(A) ∼=
aclN (C).

Proof. Let BA be a basis of A and let BC be a basis of C. Choose a
bijection f : BA → BC . We first show that f is elementary in the sense
that for all formulas ϕ(x1, . . . , xn) and all a1, . . . , an ∈ BA,

M |= ϕ(a1, . . . , an) ⇔ N |= ϕ(f(a1), . . . , f(an)).

Next, we show that f can be extended to an isomorphism from aclM(A)
onto aclN (C).

Claim 2.63. For every formula ϕ(x1, . . . , xn) and all a1, . . . , an ∈ BA,
ifM |= ϕ(a1, . . . , an), then N |= ϕ(f(a1), . . . , f(an)).

We prove the claim by induction on the number of free variables of
ϕ. If ϕ has no free variables, i.e., if n = 0, then the claim is satisfied
sinceM and N satisfy the same sentences.

Now suppose we have proved the claim for n. Consider a formula
ϕ(x1, . . . , xn+1) and a1, . . . , an+1 ∈ BA. We may assume that the ai
are pairwise distinct. Since BA is independent, ϕ(a1, . . . , an, xn+1) is
not algebraic. Since M is minimal, ϕ(a1, . . . , an, xn+1) is satisfied by
cofinitely many xn+1 in M . In other words, ¬ϕ(a1, . . . , an, xn+1) is
algebraic. Hence, for some ` ∈ N,

M |= ∃=`xn+1¬ϕ(a1, . . . , an, xn+1).

By our induction hypothesis,

N |= ∃=`xn+1¬ϕ(f(a1), . . . , f(an), xn+1).

It follows that ¬ϕ(f(a1), . . . , f(an), xn+1) is algebraic. Since BC is inde-
pendent, f(an+1) does not satisfy an algebraic formula with parameters
from BC \ {f(an+1)}. It follows that N |= ϕ(f(a1), . . . , f(an+1)). This
proves the claim. Hence f isM-elementary.
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Claim 2.64. If E ⊆ aclM(A), BA ⊆ E, and a ∈ aclM(A) \ E, then
any elementary function g : E → aclN (C) extends to an elementary
function g′ : E ∪ {a} → aclN (C).

Since a is algebraic over E, there is a formula θ(x, y1, . . . , yn) and
parameters e1, . . . , en ∈ E such that M |= θ(a, e1, . . . , en) and such
that for some ` ∈ N, θ(x, e1, . . . , en) is satisfied by exactly ` x inM . We
choose θ and e1, . . . , en such that ` is as small as possible. This means
that for every formula ψ(x, z1, . . . , zm) and all parameters d1, . . . , dm ∈
E withM |= ψ(a, d1, . . . , dm),

M |= ∀x(θ(x, e1, . . . , en)→ ψ(x, d1, . . . , dm)),

since otherwise θ(x, e1, . . . , en) ∧ ψ(x, d1, . . . , dm) witnesses that a is
algebraic over E and has less solutions than θ(x, e1, . . . , en).

We haveM |= ∃=`xθ(x, e1, . . . , en). Since g is elementary,

N |= ∃=`xθ(x, g(e1), . . . , g(en)).

In particular, there is b ∈ aclN (C) such that N |= θ(b, g(e1), . . . , g(en)).
We extend g to E ∪ {a} by letting g′(a) = b and g′ � E = g. Now,
let ϕ(x, y1, . . . , ym) be a formula and d1, . . . , dm ∈ E. Suppose that
M |= ϕ(a, d1, . . . , dm). By the minimaliy of `,

M |= ∀x(θ(x, e1, . . . , en)→ ϕ(x, d1, . . . , dm)).

Since g is elementary, we have

N |= ∀x(θ(x, g(e1), . . . , g(en))→ ϕ(x, g(d1), . . . , g(dm))).

But since N |= θ(b, g(e1), . . . , g(en)), this implies

N |= ϕ(b, g(d1), . . . , g(dm)).

It follows that g′ is elementary, as we wanted to show.
This second claim shows that by transfinite recursion, f can be ex-

tended to an elementary function f ′ : aclM(A) → aclN (C). It is clear
that f ′ is an isomorphism onto its image. It remains to show that f ′ is
onto aclN (C).

Let c ∈ aclN (C). Then there is an algebraic formula ϕ(x, c1, . . . , cn)
with parameters in BC witnessing that c is algebraic over BC . Let
` ∈ N be such that N |= ∃=`xϕ(x, c1, . . . , cn). For each ci let ai =
f−1(ci). By elementarity of f , M |= ∃=`xϕ(x, a1, . . . , an). Now the `
distinct elements of aclM(A) satisfying ϕ(x, a1, . . . , an) are mapped by
f ′ to the ` distinct elements of aclN (C) that satisfy ϕ(x, c1, . . . , cn). In
particular, there is a ∈ aclM(A) such that f ′(a) = c. It follows that
f ′ : aclM(A)→ aclN (C) is an isomorphism. �

Corollary 2.65. Let Φ be a countable complete theory that is strongly
minimal. Then it is κ-categorical for every uncountable cardinal κ.
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Proof. By Lemma 2.62, it is enough to show that any two models of Φ
of size κ have the same dimension. Clearly, the dimension of a model
of Φ of size κ is at most κ. On the other hand, ifM is a model of Φ
and B is a basis forM , thenM = aclM(B). But if Φ is countable, then
Φ only uses a countable vocabulary τ . There are only countably many
formulas over τ . It follows that there are at most as many algebraic
formulas with parameters from B as B has finite subsets. Since each
algebraic formula is only satisfied by finitely many elements of M , this
implies that B is infinite and therefore we only have |B| elements of
M that are algebraic over B. Hence κ = |M | ≤ |B|. It follows that
dim(M) = κ. �

Let us briefly mention a variation of strong minimality.

Definition 2.66. Let M be a τ -structure for a vocabulary τ that
contains the binary relation symbol ≤. M is o-minimal ifM is totally
ordered by ≤ and every definable subset of M is a finite unition of
intervals and singletons.

A theory is o-minimal if every model of the theory is o-minimal.

While the theory of a minimal structure is not necessarily strongly
minimal, the theory of an o-minimal structure is o-minimal. Examples
of o-minimal structures are real closed fields, dense linear orders, the
ordered field of real numbers with exponentiation. Algebraically closed
substructures of o-minimal structures have the exchange property. In
particular, in o-minimal structure it is possible to define dimensions.
However, o-minimal structures are not uncountably categorical.
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3. Types

Definition 3.1. Fix a vocabulary τ . Let M be a τ -structure and
B ⊆M . Let n ∈ N. Let Γ be a set of formulas ϕ(x1, . . . , xn, b1, . . . , bm)
that have free variables among x1, . . . , xn and additional parameters
from B. Γ is an n-type over B if it is consistent in the sense that
any finitely many formulas from Γ are simultaneously satisfied by an
n-tuple (a1, . . . , an) ∈Mn. Γ is an n-type if it is an n-type over ∅.

We write Γ(x1, . . . , xn) instead of just Γ to indicate that Γ is an n-
type and that the formulas in Γ have free variables among x1, . . . , xn. Γ
is realized by (a1, . . . , an) ∈Mn if for all ϕ(x1, . . . , xn, b1, . . . , bm) ∈ Γ,
M |= ϕ(a1, . . . , an, b1, . . . , bm). If no n-tuple in Mn realizes Γ, we say
thatM omits Γ.

Γ is a complete n-type over B if Γ is a maximal n-type over B.
Otherwise, Γ is a partial type.

Example 3.2. a) The only 0-type over B is the set

{ϕ(b1, . . . , bm) : ϕ(y1, . . . , ym) is a τ formula,
b1, . . . , bm ∈ B andM |= ϕ(b1, . . . , bm)}.

b) For all a1, . . . , an ∈Mn,

tpM((a1, . . . , an)/B) = {ϕ(x1, . . . , xn, b1, . . . , bm) :

ϕ(x1, . . . , xn, y1, . . . , ym) is a τ formula,
b1, . . . , bm ∈ B andM |= ϕ(a1, . . . , an, b1, . . . , bm)}

is a complete n-type, the type of (a1, . . . , an) over B.
c) IfM is an elementary substructure of N and (a1, . . . , an) ∈ Nn,

then the type of (a1, . . . , an) in N is an n-type over B inM.

Exercise 3.3. Determine all the complete 1-types in the structure
(Q,≤) over the set Q.

Hint: Consider the real numbers (and more!).

Lemma 3.4. Let M be a structure, A ⊆ M and let Γ be an n-type
over A inM. ThenM has an elementary extension N in which Γ is
realized.

Proof. Consider the elementary diagram eldiag(M) ofM. The vocab-
ulary of eldiag(M) has a constant symbol ca for every a ∈ M . We
introduce new constant symbols d1, . . . , dn. Let Γ′ be the theory ob-
tained from Γ by replacing every formula ϕ(x1, . . . , xn, b1, . . . , bm) ∈ Γ
by ϕ(d1, . . . , dn, cb1 , . . . , cbm).

Since every finite subset of Γ is realized by an n-tuple in M , the
theory eldiag(M)∪Γ′ is consistent. Now, ifN is a model of eldiag(M)∪
Γ′, we can consider N as an elementary extension of M. Clearly,
(dN1 , . . . , d

N
n ) realizes Γ in N . �
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Definition 3.5. Given a theory Φ over the vocabulary τ , let Sn(Φ) be
the set of all complete n-types (over ∅) that are realized in some model
of Φ. Let S(Φ) =

⋃
n∈N Sn(Φ).

Sn(Φ) carries a natural topology. O ⊆ Sn(Φ) is open if for all Γ ∈ O
there is a formula ϕ(x1, . . . , xn, b1, . . . , bm) ∈ Γ such that all ∆ ∈ Sn(Φ)
with ϕ(x1, . . . , xn, b1, . . . , bm) ∈ ∆ are types in O.

Lemma 3.6. For every theory Φ and every n ∈ N the space Sn(Φ) is
compact.

Observe that this lemma makes sense even for n = 0. In this case
Sn(Φ) is the set of all complete theories that extend Φ.

Proof. We first show that Sn(Φ) is Hausdorff. Let p, q ∈ Sn(Φ). If
p 6= q, there is a formula ϕ(x1, . . . , xn) such that ϕ ∈ p and ϕ 6∈ q.
Since q is a complete type, ϕ 6∈ q implies ¬ϕ ∈ q.

Let U be the set of all n-types that contain ϕ and let V be the set
of all n-types that contain ¬ϕ. Now p ∈ U and q ∈ V and U and V
are disjoint and open. This shows that Sn(Φ) is Hausdorff.

Now let U be a collection of open subsets of Sn(Φ) such that Sn(Φ) =⋃
U . For each type p ∈ Sn(Φ) there is some U ∈ U such that p ∈ U .

Since U is open, there is a formula ϕp(x1, . . . , xn) ∈ p such that all
n-types that contain this formula are elements of U . In order to show
that Sn(Φ) is the union of finitely many sets from U , it is enough to
show that there are finitely many types p1, . . . , pm ∈ Sn(Φ) such that
every type in Sn(Φ) contains at least one of the formulas ϕp1 , . . . , ϕpm .

Suppose this is not the case. Then whenever F ⊆ Sn(Φ) is finite,
there is an n-type q such that for all p ∈ F , ϕp 6∈ q. Since q is
complete, {¬ϕp : p ∈ F} ⊆ q. This shows that every finite subset of
{¬ϕp : p ∈ Sn(Φ)} can be realized. It follows that {¬ϕp : p ∈ Sn(Φ)} is
a type. This type extends to a complete type q that does not contain
any formula of the form ϕp, p ∈ Sn(Φ), a contradiction. �

Exercise 3.7. LetM be a structure and A ⊆M . For n ∈ N consider
the space Sn(M, A) of complete n-types over A in M. Sn(M, A) is
topologized in analogy to Sn(Φ). Show that Sn(M, A) is compact.

3.1. Isolated types.

Definition 3.8. Let Φ be a theory. A type p ∈ Sn(Φ) is isolated if
the set {p} is open in Sn(Φ), i.e., if there is a formula ϕ(x1, . . . , xn) ∈ p
such that p is the only type in Sn(Φ) that contains ϕ. Similarly, we
defined isolated types in Sn(M, A) for a structureM and A ⊆M .

Lemma 3.9. Let Φ be a complete theory and let p ∈ Sn(Φ) be isolated.
Then p is realized in every model of Φ.

Proof. Let ϕ(x1, . . . , xn) be a formula such that p is the only type in
Sn(Φ) that contains ϕ. LetM be a model of Φ in which p is realized.
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ThenM |= ∃x1 . . . ∃xnϕ. Since Φ is complete, we have ∃x1 . . . ∃xnϕ ∈
Φ. But this implies that in every model N of Φ there is an n-tuple
(a1, . . . , an) such that N |= ϕ(a1, . . . , an). Since p is isolated and since
this is witnessed by ϕ, tpN (a1, . . . , an) = p. �

Theorem 3.10 (Omitting Types Theorem). Let Φ be a countable com-
plete theory. If p ∈ Sn(Φ) is not isolated, then there is a countable
model of Φ that omits p.

Proof. Let (ci)i∈N be a sequence of new constant symbols. Let τ ′ be the
vocabulary τ of Φ together with the new constant symbols ci, i ∈ N.
We construct a maximal consistent theory Φ+ over τ ′ with the following
properties:

(1) Φ ⊆ Φ+

(2) For every formula in Φ+ of the form ∃xθ(x), there is there is
some i ∈ N such that θ(ci) ∈ Φ+.

(3) For all (i1, . . . , in) ∈ Nn, there is a formula ϕ(x1, . . . , xn) ∈ p
such that ¬ϕ(ci1 , . . . , cin) ∈ Φ+.

We construct Φ+ as the union of countably many approxiations Φm,
m ∈ N. Let Φ0 = Φ, let (ψi)i∈N be an enumeration of all sentences over
τ ′ and let (dm1 , . . . , d

m
n )m∈N be an enumeration of the set of n-tuples

from the set C = {ci : i ∈ N}. Since every Φm will be obtained by
adding only finitely many sentences to Φ0, for each m, only finitely
many of the constants ci occur in Φm.

Suppose Φm has been defined. If Φm ∪ {ψm} is not consistent, let
Φ′m = Φm ∪ {¬ψm}. If Φm ∪ {ψm} is consistent and ψm is of the form
∃xθ(x), choose some i ∈ N such that ci does not occur in Φm∪{∃xθ(x)}
and let Φ′m = Φm ∪ {∃xθ(x), θ(ci)}. Otherwise let Φ′m = Φm ∪ {ψm}.
This makes sure that (2) is satisfied for Φ+.

Now, let ϕ(dm1 , . . . , d
m
n , c) be the conjunction of the finitely many

sentences in Φ′m that use constant symbols from C, where c is a tuple
consisting of all elements of C that are used in Φ′m and are not in the
n-tuple (dm1 , . . . , d

m
n ). Note that Φ ∪ {ϕ(dm1 , . . . , d

m
n , c)} is equivalent

to Φ′m in the sense that the first theory implies every sentence in the
second and the second theory implies every sentence in the first. We
consider the formula ϕ(x1, . . . , xn, y) obtained from ϕ(dm1 , . . . , d

m
n , c) by

replacing each occurence of di by xi and each occurence of cj by yj.
Clearly, Φ′m |= ∃yϕ(d1, . . . , dn, y). If ∃yϕ(x1, . . . , xn, y) 6∈ p, then
¬∃yϕ(x1, . . . , xn, y) ∈ p since p is complete. In this case let

Φm+1 = Φ′m ∪ {∃yϕ(d1, . . . , dn, y)}.
This takes care of (3). If

∃yϕ(x1, . . . , xn, y) ∈ p,
then, since p is not isolated, there is another type q such that

∃yϕ(x1, . . . , xn, y) ∈ q.
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Let ψ(x1, . . . , xn) be any formula in q \ p. Then ¬ψ(x1, . . . , xn) ∈ p.

Claim 3.11. Φ′m ∪ {ψ(dm1 , . . . , d
m
n )} is consistent.

Since ∃yϕ(x1, . . . , xn, y) ∈ q, q ∪ {ϕ(x1, . . . , xn, y) can be realized.
Since the variables from C do not occur in q = q(x1, . . . , xn), this
shows that q(dm1 , . . . , dmn ) ∪ {ϕ(dm1 , . . . , d

m
n , c) is consistent. LetM be

a model of q(dm1 , . . . , dmn ) ∪ {ϕ(dm1 , . . . , d
m
n , c)}. Since q ∈ S(Φ), Φ ⊆ q.

It follows thatM is a model of Φ. Since ψ(x1, . . . , xn) ∈ q,
M |= Φ ∪ {ϕ(dm1 , . . . , d

m
n , c), ψ(dm1 , . . . , d

m
n )}.

But Φ ∪ {ϕ(dm1 , . . . , d
m
n , c)} |= Φ′m. Hence M is a model of Φ′m ∪

{ψ(dm1 , . . . , d
m
n )}, which proves the claim.

Let Φm+1 = Φ′m∪{ψ(dm1 , . . . , d
m
n )}. The choice of ψ(x1, . . . , xn) takes

care of (3).
This finishes the construction of the theories Φm. Let Φ+ =

⋃
m∈N Φm.

Since every Φm is consistent, so is Φ+. Let N be a model of Φ+. Let
M = {cNi : i ∈ N}. (2) implies that M is the underlying set of an
elementary substructureM of N . (3) guarantees thatM omits p. �

The proof of the omitting types theorem together with some book
keeping can be used to show that countably many non-isolated types
can be omitted simultaneously, in a countable model.

Corollary 3.12. Let Φ be a countable complete theory. A type in S(Φ)
is isolated iff it is realized in every countable model of Φ.

Theorem 3.13. Let Φ be a countable complete theory having only in-
finite models. Then the following are equivalent:

(1) S(Φ) is countable and every type in S(Φ) is isolated.
(2) Each Sn(Φ) is finite.
(3) Φ is ℵ0-categorical.

Proof. (1)⇒(2): Let n ∈ N. If every type in Sn(Φ) is isolated, then
every singleton in Sn(Φ) is open. Since Sn(Φ) is compact, the space is
a finite union of singletons and therefore finite.

(2)⇒(3): Let M and N be two countable models of Φ. We use
back-and-forth argument that is practically the same as the one used
to show the uniqueness of the random graph. The crucial step is this:

Suppose we have chosen elements p1, . . . , pn of M and q1, . . . , qn of
N such that tpM(p1, . . . , pn) = tpN (q1, . . . , qn). Note that for n = 0
this just says that M and N are elementarily equivalent, which they
are. Let pn+1 ∈ N \ {p1, . . . , pn}. The type tpM(p1, . . . , pn+1) is iso-
lated and hence implied by a single formula ϕ(x1, . . . , xn+1). We have
∃xn+1ϕ(x1, . . . , xn+1) ∈ tpM(p1, . . . , pn). Hence ∃xn+1ϕ(x1, . . . , xn+1) ∈
tpN (q1, . . . , qn). It follows that there is some qn+1 ∈ N such that
N |= ϕ(q1, . . . , qn+1). Now tpN (q1, . . . , qn+1) is the type implied by
ϕ(x1, . . . , xn+1) and hence equal to tpM(p1, . . . , pn+1).
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This allows it to recursively construct an isomorphism between M
and N .

(3)⇒(1): If p ∈ S(Φ) is not isolated, there is a countable modelM
of Φ that omits p. Let N be a model of Φ in which p is realized by
some n-tuple (a1, . . . , an). By the Löwenheim-Skolem Theorem, N has
a countable elementary submodel that contains a1, . . . , an. It follows
that p is realized in some countable model of Φ. This model is not
isomorphic toM. Hence Φ is not ℵ0-categorical.

This shows that if Φ is ℵ0-categorical, then all types are isolated. If
all types are isolated, then, again by compactness, each Sn(Φ) is finite.
Therefore S(Φ) is countable in this case. �

Exercise 3.14. Show that the theory of algebraically closed fields of
characteristic p, p = 0 or p a prime number, has exactly one 1-type that
is not isolated, namely the type of an element that is transcendent over
the prime subfield.

Exercise 3.15. How many n-types does the theory of dense linear
orders without endpoints have?

3.2. Saturation.

Definition 3.16. Let κ be a cardinal. A structureM is κ-saturated
if for all A ⊆ M with |A| < κ, every 1-type over A is realized in M.
M is saturated if it is |M |-saturated.

Lemma 3.17. LetM be a structure for a countable vocabulary and let
κ be an infinite cardinal. Suppose every 1-type over every set A ⊆ M
of size < κ is realized inM. Then for every n ∈ N, every n-type over
every set A ⊆M of size < κ is realized inM.

Proof. We prove the lemma by induction on n. Suppose every every
n-type and every 1-type over every set A ⊆ M of size < κ is realized
in M. Let A ⊆ M be a set of size < κ and let Γ(x1, . . . , xn+1) be
a complete n + 1-type over A. Let Γn(x1, . . . , xn) be the subset of Γ
consisting of formulas that only have the free variables x1, . . . , xn.

By the inductive hypothesis, there is an n-tuple (a1, . . . , an) ∈ Mn

realizing Γn. We claim that Γ(a1, . . . , an, xn+1) is a 1-type over the set
A ∪ {a1, . . . , an}.

To see that Γ(a1, . . . , an, xn+1) is a type let ϕ1, . . . , ϕk be formulas in
Γ. Since Γ is complete,

ψ(x1, . . . , xn+1) = ϕ1 ∧ · · · ∧ ϕk ∈ Γ.

The formula ∃xn+1ψ is consistent with any finite set of formulas in
Γ. Since Γ is complete, ∃xn+1ψ ∈ Γ. Hence ∃xn+1ψ ∈ Γn. It follows
that M |= ∃xn+1ψ(a1, . . . , an). Let a ∈ M be a witness to this. Now
a simultaneously realizes ϕ1(a1, . . . , an, xn+1), . . . , ϕk(a1, . . . , an, xn+1),
showing that Γ(a1, . . . , an, xn+1) is a 1-type.
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By our assumption there is an+1 ∈ M realizing Γ(a1, . . . , an, xn+1).
Now (a1, . . . , an+1) realizes Γ. This finishes the inductive argument. �

Example 3.18. a) The random graph is saturated:
Since the Φrandom has quantifier elimination, every type is equivalent

to a type that consists of quantifier free formulas. Hence a complete
1-type over a finite set either says that the vertex realizing this type is
equal to a certain vertex in the finite set or specifies to which vertices
from the finite set the vertex realizing the type is connected. The
extension axioms precisely state that every 1-type over a finite set is
realized.

b) (Q,≤) is saturated:
Again by quantifier elimination, we only have to consider types con-

sisting of quantifier free formulas. But quantifier free 1-types over
finite sets essentially only describe the relative position of a new point
to these finitely many points. Since the order is dense and there are no
endpoints, all these types are realized.

Theorem 3.19. Let Φ be a countable complete theory that has only
infinite models.

a) If M is a κ-saturated model of Φ, then every model N of Φ of
size ≤ κ embeds intoM elementarily.

b) IfM and N are both saturated models of Φ of the same size, then
they are isomorphic.

Proof. a) Let {aα : α < κ} be a enumeration of N . We define an ele-
mentary embedding e of N into M by recursion. Suppose for some
β < κ we have defined e(aα) for all α < β. Consider the type
tpN (aβ/{aα : α < β}). This type corresponds to the type p in M
over the set {e(aα) : α < β} that is obtained by replacing every for-
mula of the form ϕ(x, ai1 , . . . , ain) by ϕ(x, e(ai1), . . . , e(ain)). SinceM
is κ-saturated, there is some b ∈M that realizes p. Let e(aβ) = b. This
finishes the recursive definition of e.

It is easily checked that e : N →M is an elementary embedding.
b) We use the same approach as in the proof of a), but in a back-

and-forth way. Let (aα)α<κ and (bα)α<κ be enumerations of M and N ,
respectively. We call an ordinal α even if it is of the form β + 2n for
some n ∈ N and some β that is either 0 or a limit ordinal. Otherwise
α is odd.

Now suppose that for some β < κ we have defined two sequences
(pα)α<β and (qα)α<β in M , respectively in N . If β is even, let pβ be the
aγ ∈ M \ {pα : α < β} of the smallest possible index. Choose qβ ∈ N
such that it realizes the type over {qα : α < β} that corresponds to
tpM(pβ/{pα : α < κ}). If β is odd, proceed in the same way with the
roles of M and N switched. This finishes the recursive definition of
two sequences (pα)α<κ and (qα)α<κ in M , respectively N .
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It is easily checked that the map pα 7→ qα is an isomorphism between
M and N . �

Definition 3.20. Let Φ be a complete theory without finite models
over a countable vocabulary τ . Let κ be an infinite cardinal. A model
M is κ-universal if every model N of Φ of size < κ elementary embeds
intoM. M is universal if it is |M |+-universal.

A map f : A → M is partial elementary if it preserves all τ -
formulas. M is κ-homogenous if for all A ⊆ M with |A| < κ, every
partial elementary map f : A→M , and every a ∈M there is a partial
elementary extension f : A ∪ {a} → M of f . M is homogeneous if
it is |M |-homogeneous.

Note that by the usual back-and-forth argument, if M is homoge-
neous and A ⊆M is of size < |M |, then every partial elementary map
f : A→M extends to an automorphism ofM.

Theorem 3.21. Let κ be an infinite cardinal. Then a structureM is
κ-saturated iff it is κ+-universal and κ-homogeneous. If κ > ℵ0, then
M is κ-saturated iff it is κ-universal and κ-homogeneous.

Proof. Let κ be an infinite cardinal. IfM is κ-saturated, then it is κ+-
universal and κ-homogeneous by the arguments in the proof of Theorem
3.19. Clearly, κ+ universality is stronger than κ-universality.

On the other hand, assume thatM is κ+-universal and κ-homogeneous.
We show thatM is κ-saturated.

Let A ⊆ M be a set of size < κ and let Γ be a 1-type over A. By
the Löwenheim-Skolem theorem, there is an elementary substructure
M0 ofM of size κ containing A.

Let N be an elementary extension ofM0 in which Γ is realized by
some element b. We can choose N of size κ. By the κ+-universality of
M, there is an elementary embedding f : N →M.

Now consider the map g : f [A] → M; f(a) → a. The map g is
partial elementary. By the κ-homogeneity ofM, g extends to a partial
elementary map g : f [A]∪{f(b)} →M. Now g(f(b)) realizes the type
Γ.

If κ > ℵ0, we can choose the elementary submodelM0 of size < κ.
Also the elementary extension N can be chosen of size < κ. The rest
of the argument goes through as before, giving the second part of the
theorem. �

Definition 3.22. For an infinite cardinal κ, 2<κ denotes the cardinal
sup{2λ : λ < κ}.

Recall that the Generalized Continuum Hypothesis (GCH) is
the statement that for every infinite κ, 2κ is the cardinal successor κ+ of
κ. GCH is equivalent to the statement that for all infinite κ, 2<κ = κ.
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Theorem 3.23. a) Let Φ be a complete countable theory with only
infinite models. Then for every cardinal κ, Φ has a κ-saturated model.

b) GCH implies that Φ has arbitrarily large saturated models.

Proof. a) By enlarging κ if necessary, we may assume that κ is a suc-
cessor cardinal, i.e., κ = λ+ for some infinite cardinal λ. We define an
elementary chain (Mα)α<λ+ of models of Φ. LetM0 be any model of
Φ of size κ. Suppose β is some ordinal < λ+ andMα has been defined
for all α < β.

Let N β
0 be the limit of the elementary chain (Mα)α<β. Let µβ be

the number of 1-types in N β
0 over sets of size < κ and let (pγ)γ<µβ

be an enumeration of those types. We construct an elementary chain
(N β

γ )γ<µβ as follows: Suppose for some ν < µβ, N β
γ has been defined for

all γ < ν. Let Lβν be the limit of (N β
γ )γ<ν . Since Lβν is an elementary

extension of Nβ
0 , pν is a type in Lβν over a set of size < κ. Let N β

ν be
an elementary extension of Lβν in which pν is realized. This finishes the
definition of the elementary chain (N β

γ )γ<µβ .
Now let Mβ be the limit of (N β

γ )γ<µβ . This finishes the definition
of the elementary chain (Mα)α<λ+ . Finally, let M be the limit of
(Mα)α<λ+ . Let A ⊆ M be a set of size < κ = λ+. Then for some
α < λ+, A ⊆Mα. If p is a type inM over A, then by our construction,
p is realized inMα+1 and hence inM.

b) The proof is exactly the same as for a), only we keep track of
the sizes of the models Mα, α < λ+. If N is of size λ+, then N has
(λ+)λ = (2λ)λ = 2λ = λ+ subsets of size λ. Since Φ is countable, for
each set A ⊆ N of size λ, there are λ 1-types in N over A. It follows
that in N there are λ+ 1-types over sets of size < λ+. It follows that
all the structures that occur in the proof of a) can be chosen of size κ.
In particular, the final model is of size κ and hence saturated. �

3.3. Stability.

Definition 3.24. Let κ be an infinite cardinal. A complete countable
theory Φ is κ-stable if for every modelM of Φ and every A ⊆M with
|A| = κ there are only κ many complete types over A.

A structureM is κ-stable if Th(M) is.

We write ω-stable for ℵ0-stable.
Note that the existence of only few types enables us to construct

small saturated models.

Theorem 3.25. Let κ be an uncountable cardinal and suppose that Φ
is a countable complete theory with only infinite models. If Φ is κ-
stable, then for every λ < κ, Φ has a λ+-saturated model of size κ. In
particular, if κ is a successor cardinal, Φ has a saturated model of size
κ.
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Proof. Using the method in the proof of Theorem 3.23, we construct
an elementary chain (Mα)α<λ+ of models of Φ of size κ such that for
all β < κ all types over

⋃
α<βMα are realized inMβ. This is possible

since by κ-stability there are only κ types over
⋃
α<βMα. It is easily

checked that the union of theMα is λ+-saturated and of size κ. �

Example 3.26. a) For p a prime or p = 0 and for all infinite κ, the
theory ΦACFp is κ-stable.

b) The theory of dense linear orders without endpoints is not ω-
stable.

Theorem 3.27. If a countable complete theory Φ is ω-stable, then it
is κ-stable for every infinite κ.

Proof. Suppose that Φ is not κ-stable. Then for some modelM of Φ
and some n there is A ⊆ M such that |A| = κ and |Sn(M, A)| > κ.
We say that a formula ϕ(x1, . . . , xn) with parameters in A (not shown)
is small if it is contained in not more than κ complete types over A.
Otherwise the formula is large.

Since there are only κ formulas with parameters in A and every small
formula is contained in only κ many types over A, there are at most κ
types that contain small formulas. It follows that every large formula
is contained in at least two complete types that do not contain any
small formulas.

Let 2<ω =
⋃
n∈N 2n. We construct a family

(ϕσ(x1, . . . , xn))σ∈2<ω

of formulas with parameters in A such that the following hold:
(1) Each ϕσ is large.
(2) For all σ ∈ 2<ω, ϕσ is equivalent to ϕσ_0 ∨ ϕσ_1.
(3) For all σ ∈ 2<ω, ϕσ_0 ∧ ϕσ_1 is false.
Let ϕ∅ be any large formula. Suppose for some σ ∈ 2<ω we have

already chosen ϕσ. Choose two distinct complete types p and q con-
taining ϕσ that contain only large formulas. Let ψ ∈ p be such that
¬ψq. Let ϕσ_0 = ϕσ ∧ ψ and ϕσ_1 = ϕσ ∧ ¬ψ. Since p and q are
complete, ϕσ_0 ∈ p and ϕσ_1 ∈ q. Since p and q contain only large
formulas, ϕσ_0 and ϕσ_1 are large.

Let A0 ⊆ A be the set of parameters used in formulas of the form
ϕσ, σ ∈ 2<ω. Clearly, A0 is countable. For each x ∈ 2ω, {ϕx�k : k ∈ N}
is a type over A0 and hence contained in a maximal n-type px over
A0. But for any distinct x, y ∈ 2ω, px 6= py. It follows that there
are 2ℵ0 complete n-types over the countable set A0. Hence Φ is not
ω-stable. �

3.4. Indiscernibles.

Definition 3.28. Let M be a structure over a vocabulary τ and let
(I,<) be a linear order. A family (ai)i∈I of elements ofM is a sequence
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of indiscernibles if the ai are pairwise distinct and for all τ -formulas
ϕ(x1, . . . , xn) and strictly increasing n-tuples (i1, . . . , in), (j1, . . . , jn) ∈
In

M |= ϕ(ai1 , . . . , ain)↔ ϕ(aj1 , . . . , ajn).

Theorem 3.29. If a theory Φ has an infinite model, then for every lin-
ear order (I,<) there is a model of Φ with a sequence of indiscernibles
indexed by I.

The proof of this theorem uses the infinite Ramsey theorem in a
more general form than the previously mentioned theorem for graphs.
For a set X and a cardinal n let [X]n denote the collection of n-element
subsets of X.

Theorem 3.30. For all n, k ∈ N with n, k > 0, all infinite sets X, and
all colorings c : [X]n → k there is an infinite set H ⊆ X such that c is
constant on [H]n.

Proof of Theorem 3.29. For each i ∈ I we introduce a new constant
symbol ai. Now consider the theory

ΦI = Φ ∪ {ai 6= aj : i, j ∈ I, i 6= j}
∪ {ϕ(ai1 , . . . , ain)↔ ϕ(aj1 , . . . , ajn) :

ϕ is a τ -formula and (i1, . . . , in) and (j1, . . . , jn)

are strictly increasing n-tuples in I}.
Is is clear that any model of ΦI is a model of Φ with a sequence of
indiscernibles indexed by I.

We show that ΦI is consistent. LetM be an infinite model of Φ and
let L ⊆M be a countably infinite set. Choose a linear order < of order
type ω on L. Now let Φ0 be a finite subset of ΦI . We show that Φ0 is
consistent by interpreting the ai inM such that the resulting structure
satisfies Φ0.

Let ∆ be the set of all τ -formulas ϕ such that for some n and
strictly increasing n-tuples (i1, . . . , in) and (j1, . . . , jn) in I we have
ϕ = ϕ(x1, . . . , xn) and ϕ(ai1 , . . . , ain)↔ ϕ(aj1 , . . . , ajn) ∈ Φ0. Let n be
such that all ϕ ∈ ∆ are formulas in the free variables x1, . . . , xn.

Given a strictly increasing n-tuple (b1, . . . , bn) in L, let

c({b1, . . . , bn}) = {ϕ ∈ ∆ :M |= ϕ(b1, . . . , bn)}.
By Ramsey’s theorem, there is an infinite set H ⊆ L such that c is
constant on [H]n. Let I0 be a finite subset of I such that all ai that
occur in Φ0 have i ∈ I0. Let e : I0 → L be order preserving. For each
i ∈ I0 interpret ai by e(i). All other ai can be interpreted arbitrarily.
It is easily checked that this yields a model of Φ0. �

Lemma 3.31. IfM is a structure for a countable vocabulary andM
is generated by a well-ordered sequence of indiscernibles, then for each
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countable set A ⊆M only countably many types over A are realized in
M.

Proof. Let (ai)i∈I be a well-ordered sequence of indiscernibles generat-
ing M and let S ⊆ M be countable. Then there is a countable set
A0 ⊆ A such that every element of S can be obtained by evaluating a
term in n variables at an n-tuple from A0. Now the type of a tuple b
from M over S only depends on its type over A0.

In fact, if b = (b1, . . . , bn) is an n-tuple from M , then b1, . . . , bn are
already contained in the substructure of M generated by a finite set
C = {ai1 , . . . , aik} ⊆ A. The type of b over A0, and therefore over S,
only depends on the type of (ai1 , . . . , aik) over A0. But since (ai)i∈I
is a sequence of indiscernibles, the type of (ai1 , . . . , aik) over A0 only
depends on the quantifier free type that (i1, . . . , ik) has in I over the
set I0 = {i ∈ I : ai ∈ A0}. Here the quantifier free type consists of
all quantifier free formulas in the complete type.

We may assume that i1 < · · · < ik. The quantifier free type of
(i1, . . . , ik) over I0 describes the relative positions of i1, . . . , ik to the
elements of I0. For each i ∈ I there are the following possible positions
relative to I0:

(1) i greater than all elements of I0,
(2) i is equal to one element of I0, or
(3) i 6∈ I and there is some j ∈ I0 that is the smallest element of I0

above i.
Since I0 is countable, there are only countably many possible positions
of an element of I relative to I0. It follows that there are countably
many possible positions of i1, . . . , ik relative to I0. Hence in M there
are only countably many types over S. �

Theorem 3.32. Let κ be an infinite cardinal and let Φ be a theory with
infinite models over a countable vocabulary τ . Then Φ has a modelM
of size κ such that for each countable set S ⊆ M only countably many
complete types over S are realized inM.

Proof. We define an increasing sequence (τn)n∈N of vocabularies and
(Φn)n∈N of theories such that each Φn is a theory over the vocabulary
τn. Let τ0 = τ and Φ0 = Φ. Suppose we have already defined τn and
Φn.

For each τn-formula ϕ(x, x1, . . . , xn) we choose a new n-ary function
symbol fϕ and let

τn+1 = τn ∪ {fϕ : ϕ is a τn-formula}.
Let

Φn+1 = Φn ∪ {∀x1, . . . , xn(∃xϕ→ ϕ(fϕ(x1, . . . , xn), x1, . . . , xn)) :

ϕ(x, x1, . . . , xn) is a τn-formula}.
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Now let τ ′ =
⋃
n∈N τn and Φ′ =

⋃
n∈N Φn. By induction on n, us-

ing Skolem functions it is easily checked that each model of Φ can be
expanded to a model of Φn. Hence Φ′ has an infinite model.

By Theorem 3.29, Φ′ has a model N generated by a sequence (ai)i∈κ
of indiscernibles. By the construction of Φ′, it has built in Skolem
functions:

For every τ ′-formula ϕ(x, x1, . . . , xn) there is an n-ary function sym-
bol fϕ ∈ τ ′ such that

∀x1, . . . , xn(∃xϕ→ ϕ(fϕ(x1, . . . , xn), x1, . . . , xn)) ∈ Φ′.

By the Tarski-Vaught criterion, this implies that every substructure of
a model of Φ′ is an elementary substructure.

Now letM be the substructure of N generated by the set {ai : i ∈
κ}. Note that since τ ′ is countable,M is of size κ. The sequence (ai)i∈κ
is a sequence of indiscernibles forM andM is generated by the ai.

By Lemma 3.31, for each countable set S ⊆ N , there are only count-
ably many complete types over S realized in N . Now, this is with
respect to the vocabulary τ ′. But every complete type of τ ′ formulas
contains a unique complete type with respect to the vocabulary τ . It
follows that for every countable set S ⊆ N there are only countably
many complete types with respect to τ over S realized in N . This
finishes the proof of the theorem. �

Corollary 3.33. Let κ be an uncountable cardinal. If a theory Φ over
a countable vocabulary is κ-categorical, then it is ω-stable.

Proof. By Theorem 3.32, letM be a model of Φ of size κ such that over
every countable set S ⊆ M only countably many types are realized in
M. By the κ-categoricity of Φ, every model of Φ of size κ has the
property that only countably many types are realized over countable
subsets. If Φ is not ω-stable, we can construct a model N of Φ of size
ℵ1 such that over some countable subset of N there are uncountably
many types realized in N . We can then find an elementary extension
of N of size κ. A contradiction. �

Corollary 3.34. Let κ be an infinite cardinal. A complete countable
theory Φ with only infinite models is κ-categorical iff every model of Φ
of size κ is saturated.

Proof. If every model of Φ of size κ is saturated, then these models are
pairwise isomorphic and hence Φ is κ-categorical.

Now assume that Φ is κ-categorical. We first consider the case κ >
ℵ0. By Corollary 3.33, Φ is ω-stable. By Theorem 3.27, Φ is κ-stable.
By Theorem 3.25, Φ has λ+-saturated models of size κ for all λ < κ.
Since Φ has only one model of size κ up to isomorphism, this model is
λ+-saturated for all λ < κ. It follows that the model is κ-saturated.

Now consider the case κ = ℵ0. By Theorem 3.13, since Φ is ℵ0-
categorical, for each n ∈ N, there are only finitely many n-types and
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each n-type is isolated. But this implies that every n-type over a finite
subset of a model of Φ is generated by a single formula. Hence the type
is realised. It follows that every model of Φ is ℵ0-saturated. �

4. The categoricity theorem

In this section we give a full proof of Theorem 2.18.

4.1. Prime models. Fix a countable complete theory Φ without finite
models.

Definition 4.1. A modelM of Φ is a prime model of Φ if it embeds
into every other model of Φ elementarily.

A modelM of Φ is prime over a set A ⊆M if for every model N of
Φ every partial elementary map f : A → N extends to an elementary
embedding

Theorem 4.2. a) A modelM of Φ is a prime model iff it is countable
and exactly the isolated types are realized inM.

b) Any two prime models of Φ are isomorphic.

Proof. a) Since Φ has countable models, a prime model of Φ must
be countable. Also, since every non-isolated type is omitted in some
countable model, a prime model of Φ must omit all non-isolated types.
On the other hand, all isolated types are realized in every countable
model. It follows that prime models realize exactly the isolated types.

Now assume that M is a countable model of Φ in which only the
isolated types are realized. Let N be a model of Φ. We construct an
elementary embedding f :M→N .

Let (an)n∈N be an enumeration of M . Suppose for some n ∈ N and
all i < n we have already chosen f(ai) ∈ N such that f is partial ele-
mentary on {ai : i < n}. Let ϕ(x0, . . . , xn) be a formula that generates
the type of (a0, . . . , an).

Since
M |= ∃xn+1ϕ(a0, . . . , an, xn+1),

∃xn+1ϕ(x0, . . . , xn, xn+1) is in the type of (a0, . . . , an). Hence it is
in the type of (f(a0), . . . , f(an)). Choose f(an+1) such that N |=
ϕ(f(a0), . . . , f(a(n+ 1)). Now the n-tuple (f(a0), . . . , f(an+1)) has the
same type in N as (a0, . . . , an+1) has inM, namely the type generated
by ϕ(x0, . . . , xn+1). Hence f is partial elementary on {a1, . . . , an+1}.
This finishes the recursive definition of f . Since f is partial elementary
on on all of M , it is an elementary embedding ofM into N .

b) The proof uses the back-and-forth method using the argument in
the proof of a) for extending partial elementary maps. �

Theorem 4.3. Φ has a prime model iff for all n ∈ N, the isolated types
are dense in Sn(Φ).
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Proof. If the isolated types are not dense in Sn(Φ), then there is a
formula ϕ(x1, . . . , xn) that is consistent, i.e., realized in some model of
M, but not contained in any isolated type. We call such a formula
perfect. Since Φ is complete, the formula ∃x1, . . . , xnϕ is in Φ. Hence
every model of Φ contains an n-tuple satisfying ϕ. But the type of such
an n-tuple is never isolated. Hence Φ has no prime model.

Now assume that the isolated types are dense in each Sn(Φ). We use
a variation of the proof of the Omitting Types Theorem to construct a
countable complete Henkin theory Φ+ whose canonical model realizes
only isolated types.

Let τ be the vocabulary of Φ. Let τ ′ be the vocabulary τ with
additional constant symbols ci, i ∈ N. We construct a complete theory
Φ+ over τ ′ with the following properties:

(1) Φ ⊆ Φ+.
(2) For every formula ∃xθ(x) ∈ Φ+ there is i ∈ N such that θ(ci) ∈

Φ+.
(3) For all (i1, . . . , in) ∈ Nn, there is a complete formula ϕ(x1, . . . , xn)

such that ϕ(ci1 , . . . , cin) ∈ Φ+.

The construction of Φ+ is as in the proof of the omitting types the-
orem. The crucial step is the following: we have constructed an ex-
tension Φ′ of Φ such that Φ′ \ Φ is finite and we are given an n-tuple
(d1, . . . , dn) of constant symbols. Our task is to find a complete formula
ϕ(x1, . . . , xn) such that Φ′ ∪ {ϕ(d1, . . . , dn)} is consistent.

Let θ(d1, . . . , dn, c) be the conjunction of the sentences in Φ′ \ Φ,
where for some k, c is a k-tuple consisting of all the new constant sym-
bols used in Φ′ that are not among d1, . . . , dn. Since the isolated types
are dense in Sn+k(Φ), θ(x1, . . . , xn, y1, . . . , yk) is contained in some iso-
lated n + k-type p. The type p is generated by some complete for-
mula ϕ(x1, . . . , xn, y1, . . . , yk). But if ϕ(x1, . . . , xn, y1, . . . , yk) is com-
plete, then so is ∃y1, . . . , ykϕ.

By the choice of ϕ, the theory Φ′∪{∃y1, . . . , ykϕ(d1, . . . , dn, y1, . . . , yk)}
is consistent. Φ+ is an extension of this theory and therefore, the type
of (d1, . . . , dn) in a canonical model of Φ+ we is isolated.

It follows that the canonical model of Φ+ is a prime model of Φ since
it is countable and realizes only isolated types. �

Lemma 4.4. If Φ has only countably many complete types, then the
isolated types are dense. In particular, Φ has a prime model.

Proof. If for some n ∈ N the isolated types are not dense in Sn(Φ), then
there is a perfect formula ϕ(x1, . . . , xn), i.e., a consistent formula that
is not contained in an isolated type. Starting with ϕ∅ = ϕ we choose
a tree (ϕσ)σ∈2<ω of consistent (with Φ) formulas with free variables
among x1, . . . , xn such that for all σ ∈ 2<ω there is a formula ψσ with
ϕσ_0 = ϕσ ∧ ψσ and ϕσ_1 = ϕσ ∧ ¬ψσ.
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This can be done recursively since whenever ϕ(x1, . . . , xn) is perfect,
there is a formula ψ(x1, . . . , xn) such that ϕ implies neither ψ nor ¬ψ
and hence ϕ ∧ ψ and ϕ ∧ ¬ψ are both consistent.

Given the tree (ϕσ)σ∈2<ω we get 2ℵ0 pairwise distinct complete n-
types as in the proof of Theorem 3.27. Hence, if Φ has only countably
many complete types, then the isolated types are dense and Φ has a
prime model. �

Note that this lemma implies that every ω-stable theory has only
countably many types and has a prime model. However, we can do a
bit better.

Lemma 4.5. Let Φ be ω-stable and let M |= Φ. For all A ⊆ M and
all n ∈ N, the isolated types are dense in Sn(M, A).

Proof. If the isolated types are not dense in Sn(M, A), then there is
a formula ϕ(x1, . . . , xn) with parameters in A that is not contained in
an isolated type. As in the proof of the previous lemma, we can build
a tree (ϕσ)σ∈2<ω of consistent formulas with parameters in A that are
not contained in any isolated type. There is a countable set A0 ⊆ A
such that all ϕσ have only parameters from A0. As in the proof of the
previous lemma, we can conclude that there are 2ℵ0 complete types
over the set A0, contradicting the ω-stability of Φ. �

This lemma has an important consequence.

Theorem 4.6. If Φ is ω-stable, M |= Φ, and A ⊆ M, then there is
an elementary substructure M0 of M such that M0 is prime over A
and every n-tuple from M0 realizes an isolated type over A.

Proof. For some ordinal γ we build a sequence (Aα)α≤γ of subsets of
M as follows:

Let A0 = A. If δ is a limit ordinal and Aα has been chosen for all
α < δ, let Aδ =

⋃
α<δ Aα. If Aα has been chosen and no a ∈ M \ Aα

realizes an isolated type over Aα, then we stop and let γ = α. If there
is some a ∈ M \ Aα realizing an isolated type over Aα, we let aα = a
and Aα+1 = Aα ∪ {aα}.

LetM0 be the substructure ofM on the set Aγ. Of course, at this
point it is not clear that Aγ is the underlying set of a substructure of
M. However, if ϕ(x, a1, . . . , an) a formula with parameters in Aγ and
there is some a ∈M such thatM |= ϕ(a, a1, . . . , an),

By Lemma 4.5, the isolated types are dense in S1(M, Aγ). Hence
there is b ∈ M such thatM |= ϕ(b, a1, . . . , an) and the type of b over
Aγ is isolated. By the choice of γ, b ∈ Aγ.

By the Tarski-Vaught-criterion, M0 is indeed an elementary sub-
structure ofM. Now let N |= Φ and assume that f : A→ N is partial
elementary. We define an extension f of f to all of Aγ.

Suppose f has been defined on some Aα and is partial elementary.
Then aα realizes some isolated type over Aα. Let ϕ(x, b1, . . . , bn) be
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a formula with parameters in Aα that isolates this type. Since f is
partial elementary on Aα, there is some c ∈ N such that

N |= ϕ(c, f(b1), . . . , f(bn)).

Now we can extend f by letting f(aα) = c. It is clear that f is an
elementary embedding ofM0 into N that extends f .

It remains to show that only isolated types over A are realized inM0.
We show by induction on α ≤ γ that every n-tuple from Aα realizes
an isolated type over A. The limit step is trivial. The successor step
follows from the following lemma.

Lemma 4.7. Suppose A ⊆ B ⊆M ,M |= Φ and every n-tuple b ∈ Bn

realizes an isolated type over A. Suppose that a ∈ Mm realizes an
isolated type over B. Then a realizes an isolated type over A.

Let ϕ(x, y) be a formula and let b ∈ Bm be such that ϕ(x, b) isolates
the type of a over B. Let θ(y) be a formula with parameters in A that
isolates the type of b over A. We claim that ϕ(x, y) ∧ θ(y) isolates the
type of (a, b) over A.

Suppose that M |= ψ(a, b). Let MA denote the structure M ex-
panded by the natural interpretations of new constant symbols for all
elements of A. Since ϕ(x, b) isolates the type of a over B,

Th(MA) |= ϕ(x, b)→ ψ(x, b).

Since θ(y) isolates the type of b over A,

Th(MA) |= θ(y)→ (ϕ(x, y)→ ψ(x, y))

and
Th(MA) |= (θ(y) ∧ ϕ(x, y))→ ψ(x, y).

This shows that the type of (a, b) over A is isolated. Now ∃y(θ(y) ∧
ϕ(x, y)) isolates the type of a over A. �

4.2. Vaughtian pairs.

Definition 4.8. Let τ be a countable vocabulary. IfM is a τ -structure
and ϕ(x1, . . . , xn) is a τ -formula with parameters inM , we write ϕ(M)
for the set {a ∈Mn :M |= ϕ(a)}.

A pair (N ,M) is a Vaughtian pair if M is a proper elementary
substructure of N and there is a formula ϕ with parameters in M such
that ϕ(M) is infinite and ϕ(M) = ϕ(N ).

A theory Φ has a Vaughtian pair if there is a Vaughtian pair (N ,M)
of models of Φ. Φ has a (κ, λ)-model if there is a a modelM of Φ of
size κ and there is a formula ϕ(x1, . . . , xn) such that ϕ(M) is of size λ.

Lemma 4.9. If a countable theory Φ has a (κ, λ)-model where κ > λ ≥
ℵ0, then it has a Vaughtian pair.
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Proof. Let N be a (κ, λ)-model of Φ. Let ϕ be a formula such that
|ϕ(N )| = λ. By the Löwenheim-Skolem theorem, there is an ele-
mentary submodel M of N of size λ such that ϕ(N ) ⊆ M. Now
ϕ(M) = ϕ(N), butM 6= N . Hence (N ,M) is a Vaughtian pair. �

Lemma 4.10. If a countable complete theory Φ has a Vaughtian pair,
then it has a Vaughtian pair consisting of countable structures.

Proof. Let (N ,M) be a Vaughtian pair of Φ and let ϕ(x1, . . . , xn) be
a formula with parameters in M such that ϕ(M) is infinite and equals
ϕ(N ). We introduce a new unary relation symbol U and interpret U in
N byM . Slightly abusing notation, we write UN for the interpretation
of U in N .

Let (N0, U
N0) be a countable elementary submodel of (N , UN ) con-

taining the parameters used in ϕ. Then UN0 carries an elementary
substructure M0 of N0. Since Φ is complete, every model of Φ has
infinitely many n-tuples satisfying ϕ.

Since

(N , UN ) |= ∀x1, . . . , xn(ϕ↔ (ϕ ∧ U(x1) ∧ · · · ∧ U(xn))),

the same is true in N0. Also, N |= ∃x¬U(x). Hence N0 |= ∃x¬U(x)
and thusM0 6= N0. It follows that (N0,M0) is a Vaughtian pair. �

Lemma 4.11. Let M0 4 N0 and suppose N0 is a countable model of
Φ. Then there is a countable elementary extension (N ,M) of (N0,M0)
such that N and M are homogeneous and, for all n ∈ N, realize the
same types of Sn(Φ). In particular, N andM are isomorphic.

Proof. We first observe that if a is an n-tuple inM0 and p is a complete
m-type over a that is realized in N0, then there is an elementary exten-
sion (N ′,M ′) of (N0,M0) such that p is realized in M′. This follows
from an easy compactness argument.

Iterating this observation, we find a countable elementary extension
(N ∗,M∗) of (N0,M0) such that for all finite tuples a from M0 and all
complete types p over a, if p is realized in N0, then it is realized inM∗.

A second observation is that for every n-tuple b in N0 and every
complete m-type p over b there is an elementary extension (N ′,M ′) of
(N0,M0) such that p is realized in N ′.

Using this we construct a chain

(N0,M0) 4 (N1,M1) 4 . . .

of countable structures such that
(1) if p ∈ Sn(Φ) is realized in N3i, then it is realized inM3i+1,
(2) if a, b, and c are fromM3i+1 and a and b have the same type in
M3i+1, then there is d ∈ M3i+2 such that (a, c) and (b, d) have
the same type inM3i+2.
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(3) if a, b, and c are from N3i+2 and a and b have the same type in
N3i+2, then there is d ∈ N3i+3 such that (a, c) and (b, d) have
the same type in N3i+3.

For (1) and (2) we use the first observation, for (3) the second.
Now let (N ,M) be the direct limit of the system ((Ni,Mi))i∈N. Then

(N ,M) is a Vaughtian pair of countable structures. By (1), M and
N realize the same types. By (2) and (3), they are homogeneous. It
follows that they are isomorphic. �

Theorem 4.12 (Vaught’s two cardinal theorem). If a countable com-
plete theory Φ has a (κ, λ)-model for κ > λ ≥ ℵ0, then Φ has an
(ℵ1,ℵ0)-model.

Proof. If Φ has a (κ, λ)-model, then it has a countable Vaughtian pair
(N ,M) such that N and M are homogeneous and realize the same
types. Let ϕ(x1, . . . , xn) be a formula with parameters in M such that
ϕ(M) is infinite and equals ϕ(N ).

We build an elementary chain (Nα)α<ω1 such that each Nα is iso-
morphic to N and (Nα+1, Nα) is isomorphic to (N ,M) for all α < ω1.
In particular, no n-tuples outside N0 satisfy ϕ.

Let N0 = N . We take unions at limit stages. For a limit ordinal δ,
Nδ is the union of a chain of elementary submodels isomorphic to N .
It follows that Nδ is homogeneous and realizes the same types as N .
Hence Nδ is isomorphic to N .

Given Nα ∼= N , since N ∼=M there is an elementary extension Nα+1

of Nα such that (Nα+1, Nα) is isomorphic to (N ,M). Clearly Nα ∼= N .
Let N ∗ be the union of the Nα, α < ω1. Now N ∗ is of size ℵ1

and if a satisfies ϕ in N ∗, then a ∈ Mn. It follows that N ∗ is an
(ℵ1,ℵ0)-model. �

Corollary 4.13. If a countable complete theory Φ is ℵ1-categorical,
then it has no Vaughtian pairs and no (κ, λ)-models for κ > λ ≥ ℵ0.

In the context of ω-stable theories, we can prove a converse of Vaught’s
two cardinal theorem.

Lemma 4.14. Suppose that the countable complete theory Φ is ω-
stable. If M |= Φ and |M | ≥ ℵ1, then there is a proper elementary
extension of M such that if Γ(x1, . . . , xn) is a countable type over M
realized in N , then Γ(x) is realized inM.

Proof. We first show that there is a formula ϕ(x) with parameters inM
such that for all formulas ψ(x) with parameters inM either (ϕ∧ψ)(M)
or (ϕ ∧ ¬ψ)(M) is countable.

If there were no such formula ϕ, we could construct a binary tree
(ϕσ(x))σ∈2<ω of formulas with parameters in M such that for each σ ∈
2<ω, ϕσ(M) is uncountable and ϕσ_0(M) and ϕσ_1(M) are disjoint
subsets of ϕσ(M). As in previous arguments, the existence of such a
tree of formulas contradicts the ω-stability of Φ.
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Let ϕ(x) be as above. Let

p = {ψ(x) : ψ is a formula with parameters in M
and |(ϕ ∧ ¬ψ)(M)| ≤ ℵ0}.

It is easily checked that p is closed under finite conjunctions. It follows
that p is a type. Since for each formula ψ(x) with parameters in M
the type p contains either ψ or ¬ψ, p is complete.

Let M′ be an elementary extension of M containing an element c
that realizes p. Since Φ is ω-stable, by Lemma 4.6 there is an elemen-
tary substructure N of M′ that is prime over the set M ∪ {c} such
that every n-tuple in N realizes an isolated type over M ∪ {c}.

Now let Γ(y) be a countable type over M realized by some b in N .
There is a formula θ(y, x) with parameters from M such that θ(y, c)
isolates the type of b over M ∪ {c}. We have ∃yθ(y, x) ∈ p and for all
γ ∈ Γ ,

∀y(θ(y, x)→ γ(y)) ∈ p.
Let

∆ = {∃yθ(y, x)} ∪ {∀y(θ(y, x)→ γ(y)) : γ ∈ Γ}.
Then ∆ ⊆ p is countable, and if c′ realizes ∆, then ∃yθ(y, c′), and if
θ(b
′
, c′), then b′ realizes Γ.

Choose an enumeration (δi(x))i∈N of ∆. For all n ∈ N,

|(ϕ ∧ ¬(δ0 ∧ · · · ∧ δn))(M)| ≤ ℵ0

It follows that the set of all a ∈ M that satisfy ϕ and realize ∆ is
uncountable. Let c′ ∈ M realize ∆ and choose b′ such that M |=
θ(b
′
, c′). Then b′ realizes Γ inM. �

Theorem 4.15. If Φ is a countable, complete, ω-stable theory with an
(ℵ1,ℵ0)-model, then Φ has (κ,ℵ0)-models for all κ > ℵ1.

Proof. LetM be an uncountable model of Φ and let ϕ(x) be a formula
with parameters inM such that ϕ(M) is countable. Let N be a proper
elementary extension ofM such that every countable type realized in
N is realized inM. Then

Γ(x) = {ϕ(x)} ∪ {x 6= m : m ∈M andM |= ϕ(m)}.

is a countable type not realized in M and therefore also not in N .
Hence ϕ(M) = ϕ(N ).

Iterating this construction, we can build an elementary chain (Mα)α<κ
such that M0 = M and Mα+1 6= Mα but ϕ(Mα) = ϕ(M0). If
N =

⋃
α<κMα, then N is a (κ,ℵ0)-model of Φ. �

Corollary 4.16. Let κ be an uncountable cardinal. If a countable
theory Φ is κ-categorical, then it has no Vaughtian pairs.
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Proof. Assume that Φ has a Vaughtian pair. By the previous results,
Φ has a (κ,ℵ0)-model. An easy compactness argument shows that Φ
has a model of size κ where every infinite definable set is of size κ.
Clearly, these two models of Φ are not isomorphic. It follows that Φ is
not κ-categorical. �

4.3. The Baldwin-Lachlan theorem. We prove the following theo-
rem, which immediately implies Morley’s categoricity theorem.

Theorem 4.17 (Baldwin-Lachlan). Let Φ be a complete theory over
a countable vocabulary with infinite models. Let κ be an uncountable
cardinal. Then Φ is κ-categorical iff it is ω-stable and has no Vaughtian
pairs.

Recall that if Φ is κ-categorical, then by Corollary 4.16 Φ has no
Vaughtian pair and by Corollary 3.33 it is ω-stable. It remains to show
that if Φ is ω-stable and has no Vaughtian pairs, then it is κ-categorical.

Definition 4.18. Let τ be a countable vocabulary and letM be a τ -
structure. A formula ϕ(x1, . . . , xn) with parameters in M is minimal
if all definable subsets of ϕ(M) are finite or cofinite. The formula ϕ
is strongly minimal if ϕ is minimal in every elementary extension of
M.

Lemma 4.19. Let Φ be an ω-stable theory. Then every model of Φ
has a minimal formula.

Proof. Let M be an infinite model of Φ. If no formula is minimal,
then we can build a tree (ϕσ(x))σ∈2<ω of formulas such that for each
σ ∈ 2<ω, ϕσ(M) is infinite and for some formula ψ(x) with parameters
from M , ϕσ_0 = ϕσ ∧ ψ and ϕσ_1 = ϕσ ∧ ¬ψ. The existence of this
tree of formulas contradicts the ω-stability of Φ. �

Lemma 4.20. Suppose Φ is a theory without Vaughtian pairs over a
countable vocabulary τ .. LetM be a model of Φ and let

ϕ(x1, . . . , xm, y1, . . . , yk)

be a formula. Then there is a number n such that if a is a tuple from
M and |ϕ(M, a)| > n, then ϕ(M, a) is infinite.

Proof. If not, for every n ∈ N we can find a tuple an in M such that
ϕ(M, an) is of size at least n. We add a new unary relation symbol U
to the vocabulary τ . Let Γ(y1, . . . , yk) be the type saying

(1) U supports an elementary submodel of the full structure,
(2) U(y1) ∧ · · · ∧ U(yk),
(3) there are infinitely many x satisfying ϕ(x, y),
(4) ∀x(ϕ(x, y)→ (U(x1) ∧ · · · ∧ U(xm))).
Let N be an elementary extension of M. Since ϕ(M, an) is finite,

ϕ(M, an) = ϕ(N , an). If ∆ ⊆ Γ(y1, . . . , yk) is finite, then an realizes
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∆ in (N ,M), provided n is sufficiently large. Hence Γ can be realized
in some structure (N ′,M ′) where M′ |= Φ and N ′ is an elementary
extension ofM′.

Now let a realize Γ in (N ′,M ′). Then ϕ(M′, a) is infinite and
ϕ(M′, a) = ϕ(N ′, a), contradicting the fact that Φ has no Vaughtian
pairs. �

Corollary 4.21. If Φ has no Vaughtian pairs, then every minimal
formula is strongly minimal.

Proof. LetM |= Φ and let ϕ(x) be a minimal formula with parameters
inM . Suppose there are an elementary extension N ofM, parameters
b in N , and a formula ψ(x, y) such that ϕ(N ) ∩ ψ(N , b) is a subset of
ϕ(N ) that is neither finite nor cofinite.

By Lemma 4.20, there is n ∈ N such that for all parameters a in M ,
each of the two sets

|ψ(M, a) ∩ ϕ(M)|
and

|¬ψ(M, a) ∩ ϕ(M)|
is infinite iff it is of size larger than n. Since ϕ(x) is minimal, the
following statement is true:

(∗) For all parameters a in M , either

|ψ(M, a) ∩ ϕ(M)| ≤ n

or
|¬ψ(M, a) ∩ ϕ(M)| ≤ n.

But this statement can be expressed asM |= θ for some sentence θ.
Hence the statement holds for N instead of M. But this contradicts
our assumption that ϕ(N ) ∩ ψ(N , b) is an infinite, coinfinite subset of
ϕ(N). �

Lemma 4.22. If Φ has no Vaughtian pairs, M |= Φ, and X ⊆ Mn

is infinite and definable, then no proper elementary submodel of M
contains X. If Φ is also ω-stable, thenM is prime over X.

Proof. If N is a proper elementary submodel of M that contains X,
then (M,N ) is a Vaughtian pair. If Φ is ω-stable, then there is an
elementary submodel N of M that is prime over X. Since Φ has no
Vaughtian pairs,M = N . HenceM is prime over X. �

Proof of Theorem 4.17. We have already argued that a κ-categorical
theory Φ is ω-stable and has no Vaughtian pairs.

Now assume that Φ has no Vaughtian pairs and is ω-stable. Since
Φ is ω-stable, it has a prime model M0. By Lemma 4.19, there is a
minimal formula ϕ(x) with parameters from M0. By Corollary 4.21,
ϕ is strongly minimal.



MODEL THEORY 73

Now letM and N be models of Φ of size κ. Both structure can be
considered as elementary extensions of M0. We can define a notion
of dimension for the minimal sets ϕ(M) and ϕ(N ) just as in the case
of minimal theories. Since Φ has no Vaughtian pairs, Φ has no (κ, λ)-
models for any infinite λ < κ. Hence ϕ(M) and ϕ(N ) are both of size
κ. It follows that the dimension of both sets is κ.

Also as in the case of minimal theories, there is a partial elementary
bijection f : ϕ(M) → ϕ(N ). M is prime over ϕ(M) and hence we
can extend f to an elementary embedding f : M → N . Since N has
no proper elementary submodels containing ϕ(N ), f is onto. It follows
thatM and N are isomorphic. �
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