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Abstract

In this talk, we will give an overview of Uemura’s paper A general framework for the semantics of type
theory [Uem23], as part of the course Denotational Semantics of Dependent Type Theory by Ivan Di Liberti.

Uemura’s paper [Uem23] serves as general reference for everything we write below, even if we adapt some
proofs.

1 Discrete fibrations

For n ≥ 0 we will write [n] for the poset category {0 < . . . < n}. Recall:

Definition 1.1. A discrete fibration is a functor with unique (up to equality) right lifting against the right
endpoint inclusion 1: [0] → [1]. Given a category S, we write Disc/S for the full subcategory of Cat/S whose
objects are discrete fibrations (with target S). △

Lemma 1.2. (Grothendieck construction) There is an equivalence

Disc/S ≃ Fun(Sop,Set), F 7→ (s 7→ F−1(s))

of categories, whose inverse is given by sending a presheaf F to the projection map
∫
F → S from its category of

elements.

Remark 1.3. In particular, the representable presheafHs corresponds to the discrete fibration S/s → S. We
call these discrete fibrations representable. ♢

Lemma 1.4. A discrete fibration is representable iff it has a terminal object.

Corollary 1.5. (Yoneda lemma for discrete fibrations) For every s ∈ S and every discrete fibration p over S there
is an isomorphism

Disc/S(S/s, p) ∼= p(s), f 7→ f(ids).

We can (and will) therefore denote maps S/s → p with the corresponding element of p(s).

We saw that a natural model on a category S (possibly with the assumption that it has particular finite
limits) is a representable map of presheaves over S. Under the Grothendieck construction, this becomes a
morphism of discrete fibrations.

Lemma 1.6. Suppose given a map

E F

S

g

p q

of discrete fibrations over S. Then g has a right adjoint iff the corresponding map of presheaves is representable.
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Proof. The map of presheaves corresponding to g is representable iff for every f : S/s → F there exists an
object h(f) ∈ E and a pullback diagram

S/ph(f) E

S/q(f) F

h(f)

⌟
q

f

(1)

Since p and q are discrete fibrations, the canonical maps E/h(f) → S/ph(f) and F/f → S/q(f) are equivalences
of categories. Therefore the above pullback diagram takes the form

E/h(f) E

F/f F

⌟
q

and this says that all objects h(f) assemble into a right adjoint functor to g.

Definition 1.7. A morphism of discrete fibrations over S is representable if it has a right adjoint. △

Remark 1.8. Given a discrete fibration p on a category S with a terminal object, the unique morphism p → idS
of discrete fibrations is representable iff the discrete fibration p itself is representable in the sense of Remark
1.3. Since we will exclusively deal with the case where S has a terminal object, this terminology therefore
should not cause confusion: the absolute notion of representability can be recovered from the relative one
when mapping into the terminal object, as expected. ♢

Consider the situation of Lemma 1.6, write δg for the right adjoint of g, and suppose given an object
b ∈ F living over s ∈ S. Then we denote by {b}g ∈ S the object pδg(b). Diagram (1) gives us a map {b}g → s
in S, that we think of as the context extension of s by b.

2 Representable map categories

Constructing a natural model on a category S is therefore picking out a representable map of discrete fibra-
tions over S. We will turn the act of picking out this morphism into a morphism of appropriate structures.

Recall:

Definition 2.1. An arrow f : a → b in a category R with finite limits is exponentiable if the pullback functor
f∗ : R/b → R/a has a right adjoint f∗. △

Definition 2.2. (Representable map category)
(i) A representable map category is a category R with finite limits, equipped with the data of a stable

class of exponentiable maps, which is a class A of arrows in R satisfying:
(a) every identity morphism is in A;
(b) A is stable under composition and arbitrary pullbacks in R;
(c) every element of A is exponentiable.

We will call an element of A a representable map.
(ii) A representable map functor F : R → S is a functor between two representable map categories pre-

serving finite limits, representable maps and pushforwards: for any representable f : a → b in R, the
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canonical natural transformation
R/a R/b

S/Fa S/Fb

f∗

F F

(Ff)∗

is invertible.
We write Rep for the sub-2-category of Cat on representable map categories and representable map functors.

△

Example 2.3. (i) Given a category S, the representable maps from Definition 1.7 turn Disc/S into a rep-
resentable map category. (There are proof obligations here.)1

(ii) If R is a representable map category, then every slice R/a is again a representable map category, in
which an arrow is representable when the corresponding arrow in R is. We obtain a functor

R/(−) : R
op → Rep

(with functoriality given by pullback).
(iii) If R is a category with finite limits and E is some class of exponentiable arrows in R, we can form the

smallest pullback stable class A containing E, which turns R into a representable map category.
▽

Definition 2.4. (Type theory) A type theory is a small representable map category. △

This definition lives very much in the world of categorical semantics, and less in the world of syntactic
considerations. It is also not meant to capture all type theories people have come up with over the years,
just a particular subclass that has enjoyed some research interest.

Example 2.5. (Basic dependent type theory) Let G be the opposite of the category of finite GATs and inter-
pretations between those. We let U0 and E0 be the theories

{⊢ A}, and {⊢ A,⊢ a : A}

respectively. There is an evident arrow E0 → U0. Under Example 2.3(iii) this turns G into a representable
map category, and a type theory in the sense of Definition 2.4 we call basic dependent type theory. ▽

The above representable map category G satisfies an interesting universal property, tying it to the notion
of a natural model.

Theorem 2.6. ([Uem23, 4.13]) Given a representable map f in a representable map category R, there is an essentially
unique representable map functor G → R sending E0 → U0 to f .

3 Models of type theories

Convention 3.1. We will from now on consider T to be a type theory. ⊙

We find that a natural model on a category S is just the data of a representable map functor G → Disc/S.
We can define a model for T in an analogous way.

1That a representable map of fibrations is exponentiable follows from the fact that the slice functor Disc/(−) : Cat
op → Cat with

functoriality by pullback is a 2-functor and hence preserves adjunctions. That these representable maps are stable under arbitrary
pullback follows from pullback pasting.

3



Definition 3.2. (Model) A model of T is a category S with terminal object, and a representable map functor
T → Disc/S, A → AS. △

Note that the terminal object 1 ∈ T is sent towards the identity functor on S, and in this sense we can
recover S from second part of the data of a model of T.

We obtain a 2-category of models in the following way.

Definition 3.3. Given an isomorphism-commutative square of categories

A′ A

B′ B

u

f ′ f

v

such that f and f ′ have right adjoints g and g′, we say that the Beck-Chevalley condition is satisfied if the
canonical natural transformation ug′ → gu is an isomorphism. △

Definition 3.4. Suppose given two models (−)R and (−)S of T.
(i) A (1-)morphism from (−)R to (−)S is

(a) a functor F : R → S preserving terminal objects;
(b) for each A ∈ T an isomorphism-commutative square

AR AS

R S

FA

F

natural in A: for each f : A → B the diagram

BR BS

AR AS

R S

FB

fR

FA

fS

F

commutes up to isomorphism. Moreover, if f is representable, we require the top square to
satisfy the Beck-Chevalley condition.

(ii) Suppose given two morphisms F(−) and G(−) from (−)R to (−)S. A 2-morphism α(−) : F(−) → G(−)

consists of
(a) a natural transformation α : F → G of functors R → S;
(b) for each A ∈ T a natural transformation αA : FA → GA such that the diagram

AR AS

R S

FA

GA

F

G

αA

α

commutes up to isomorphism. (Note that such an αA is necessarily unique.)
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We write ModT for the 2-category of models of T. △

Note that we can recover F from FA by taking A the terminal object of T.

4 Democratic models

Recall the notion of context extension morphism {b}g → s in S for g : E → F a representable map of discrete
fibrations, and b ∈ F living over s. The idea of a democratic model is that all objects of category in which
the model lives can be thought of as types and context extensions.

Definition 4.1. (Democratic model) Let A 7→ AS be a model of T. The class of contextual objects in S is
generated inductively as follows:

(i) the terminal object is contextual;
(ii) every object isomorphic to a contextual object is contextual;

(iii) if b ∈ BS and a representable map f : A → B are given, then if B is contextual so is the context
extension {b}f .

The model (−)S is democratic if all objects of S are contextual. We write ModdemT for the full sub-2-category
of ModT on democratic models. △

Lemma 4.2. If R and S are models of T and R is democratic, then ModT(R, S) is a discrete category. In particular,
the 2-category ModdemT is a 1-category.

Proof. We sketch the proof: if α : F → G is a 2-morphism of models, we wish to show α(I) : FI → GI
is uniquely determined and invertible for each contextual object I of R. We argue inductively. When I is
terminal this follows from FI and GI both being terminal. For the induction step, suppose the statement
holds for I . Pick a representable f : A → B in T and b ∈ BR(I). We want to show the statement also holds
for {b}f . The diagram

BR BS

AR AS

R S

FB

GB

δf
R

δf
R

fR

FA

GA

fS

F

G

αB

⊣

αA

⊣

α

commutes up to isomorphism (using the Beck-Chevalley condition for the top squares). Starting with
b ∈ BR(I), this gives us a commutative diagram

F{b}f {FBb}f

G{b}f {GBb}f

∼=

α({b}f ) {αB(b)}f

∼=

Moreover, αB(b) is the cartesian lift of α(I) ending at GBb, so is uniquely determined by our induction
hypothesis. If α(I) is invertible, so is α({b}f ) by running the same argument in reverse order on α(I)−1.
Finally, the maps αC for C ∈ T are uniquely determined by α, as we noted earlier, so this fully determines
the 2-morphism of models.
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Every model has a largest democratic submodel:

Construction 4.3. If S is a model of T, then the heart of this model is the model S♡ whose underly-
ing category is the full subcategory of S on contextual objects, and which sends A ∈ T to the pullback
AS♡

:= S♡ ×S AS. △

The following lemma follows inductively from the definition of contextual objects.

Lemma 4.4. For any models R and S of T with R democratic, the inclusion S♡ ↪→ S induces a natural equivalence

ModT(R, S
♡) → ModT(R, S).

5 The initial model of a type theory

Using this, we can construct the initial model of a type theory.

Definition 5.1. (The (bi-)initial model) The Yoneda embedding T → Disc/T defines a model of T. We
denote its heart by I(T), and call it the bi-initial model. △

Theorem 5.2. The model I(T) is the initial object (in 2-categorical sense) of the 2-category ModT.

Proof. We will sketch the proof. First we build a functor I(T) → S for any model S of T, as follows: for every
A ∈ I(S). the map AS → S of discrete fibrations over S is representable since A is contextual, so since S has
a terminal object AS is a representable discrete fibration. We let F : I(T) → S be the functor sending A to
the representing object, and for B ∈ T we let FB : BI(T) → BS be the map I(T)/B → BS sending f : A → B

(with A ∈ I(S)) towards the element of BS(FA) classified by

S/FA ≃ AS fS

−−→ BS.

This turns out to be a morphism of models. For unicity of this map, suppose G is another such map. Then
the square

I(T)/A AS

I(T) S

GA

G

commutes and satisfies the Beck-Chevalley condition, and the map I(T) → AS preserves a terminal object.
Therefore AS is representable by GA. For B ∈ T and f : A → B we have a commutative diagram

I(T)/A S/GA

AS

I(T)/B BS

G

GA

f

∼=

fS

GB

which shows GB(f) is forced to be defined like FB(f) was.
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6 Theories and internal languages

Definition 6.1. (Theory) A theory over a type theory T (also called a T-theory) is a functor K : T → Set
that preserves finite limits. We let ThT be the 1-category of T-theories and natural transformations between
them. △

Intuitively, for A ∈ T the set K(A) is the set of closed derivations of judgment form A. Note that we do
not require K to preserve representable maps, because if it did then the set of maps from K(A) to K(B)
would need to be isomorphic to K(A ⇒ B) if our type theory is basic dependent type theory. This however
does not align with the intuitive understanding of the sets K(−) that we want to have.

Example 6.2. If T = G, basic dependent type theory, then T-theories are precisely GATs. For a theory K, the
set K(U0) is the set of closed types in our GAT and K(E0) is the set of closed terms. ▽

Definition 6.3. (Internal language) Given a model (S, (−)S) of T, the internal language of S is the T-theory
LTS defined by LTS(A) = AS(1), where 1 is the terminal object of S. △

Equivalently, LTS ∼= Disc/S(S, (−)S), where S is the identity discrete fibration over S. This makes it clear
that we have a functor LT : ModT → ThT. We will not prove the following, but given a T-theory K, we can
build a new type theory T[K], intuitively adding to our type theory new types and terms corresponding to
what we find in K.2 We can then form the initial model I(T[K]) of it and let MT(K) be the model given by

T → T[K]
(−)I(T[K])

−−−−−−→ Disc/I(T[K]).

Theorem 6.4. The assignment K 7→ MT(K) extends to a 2-functor fitting in a 2-adjunction

MT : ThT ⇄ ModT : LT.

This 2-adjunction restricts to inverse equivalences

MT : ThT ⇄ ModdemT : LT

of 1-categories.
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2Formally, T[K] is the pseudocolimit of the composite (
∫

T K)op → T
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