
Category with families

Frank Tsai

March 7, 2025

These are my personal notes on and expositions of [Hof97]. Any mistake is my own.

1 Introduction
Semantics is a compositional assignment of mathematical objects to syntactic objects; syntactic objects
are interpreted as objects in the semantic domain. A reasonable question that one may ask is: why do
we care about semantics? Besides mathematical curiosity, semantic methods have been applied to show
numerous independence results. On a more practical side, semantic methods can be applied to show
syntactic properties such as normalization and decidability of type checking. Indeed, one can argue that
the latter property is nonnegotiable in any practical computer implementation of type theory.

Hofmann [Hof97] developed an abstract semantic framework — called category with families — upon
which a single interpretation function can be defined once and for all. Then, to show that a theory can
be interpreted in a given semantic domain, one shows that the given semantic domain fits in such a
framework.

2 Substitutions
In dependent type theory, judgments have to be made with respect to a context. For example, the judg-
ment

Id(𝑥, 1) type

does not make sense without knowing that 𝑥 : N.
For us, a context is a finite list of variable declarations. Note that the order of variable declarations

matters in dependent type theory since the type of a variable may depend on a variable declared earlier.
We use the turnstile notation to denote judgments made relative to a context. The example above can be
made under the context 𝑥 : N, denoted as follows:

𝑥 : N ⊢ Id(𝑥, 1) type

Themost fundamental operation that we can perform on variables is substitution. Say, we have a term

𝑧 : R+ ⊢ ⌊𝑧⌋ : N

We can substitute ⌊𝑧⌋ for 𝑥 in Id(𝑥, 1) type, resulting in Id(⌊𝑧⌋ , 1) type. This judgment has to be made in
an updated context.

𝑧 : R+ ⊢ Id(⌊𝑧⌋ , 1) type

We may regard the substitution along the term ⌊𝑧⌋ as a morphism from 𝑧 : R+ to 𝑥 : N.

Definition 1. Let Δ and Γ = 𝑥1 : 𝜎1 , . . . , 𝑥𝑛 : 𝜎𝑛 be contexts. A substitution from Δ to Γ is a sequence of
𝑛 terms (𝑡1 , . . . , 𝑡𝑛) such that the following 𝑛 judgments hold:

Δ ⊢ 𝑡1 : 𝜎1

Δ ⊢ 𝑡2 : 𝜎2[𝑡1/𝑥1]
. . .

Δ ⊢ 𝑡𝑛 : 𝜎𝑛[𝑡1/𝑥1] . . . [𝑡𝑛−1/𝑥𝑛−1]

1

Notation 2. Let Γ = 𝑥1 : 𝜎1 , . . . , 𝑥𝑛 : 𝜎𝑛 be a context and 𝑓 = (𝑡1 , . . . , 𝑡𝑛) be a substitution. If Γ ⊢
𝜎 type (respectively Γ ⊢ 𝑡 : 𝜎), then we write 𝜎[𝑓] (respectively 𝑡[𝑓]) for the simultaneous substitution
𝜎[𝑡1/𝑥1 , . . . , 𝑡𝑛/𝑥𝑛].
Example 3. For any context Γ, there exists a unique substitution () from Γ to the empty context ⋄.
Example 4. If Γ = 𝑥1 : 𝜎1 , . . . , 𝑥𝑛 : 𝜎𝑛 is a context and Γ ⊢ 𝜎 type and 𝑥 is a fresh variable, then (𝑥1 , . . . , 𝑥𝑛)
is a substitution Γ, 𝑥 : 𝜎 ⊢ p(Γ, 𝜎) : Γ.

Example 5. For any context Γ = 𝑥1 : 𝜎1 , . . . , 𝑥𝑛 : 𝜎𝑛 and any term Γ ⊢ 𝑡 : 𝜎 we can form a substitution
Γ ⊢ (𝑥1 , . . . , 𝑥𝑛 , 𝑡) : Γ, 𝑥 : 𝜎. We write 𝑡 := (𝑥1 , . . . , 𝑥𝑛 , 𝑡).
Example 6. For any context Γ = 𝑥1 : 𝜎1 , . . . , 𝑥𝑛 : 𝜎𝑛 , the identity substitution Γ ⊢ idΓ : Γ is given by
idΓ = (𝑥1 , . . . , 𝑥𝑛).
Example 7. Substitutions can be composed in the usual way. Let Λ ⊢ 𝑔 : Δ and Δ ⊢ 𝑓 : Γ, where
𝑓 = (𝑡1 , . . . , 𝑡𝑛). The composition 𝑓 ◦ 𝑔 is the tuple (𝑡1[𝑔], . . . , 𝑡𝑛[𝑔]). It is clear that Λ ⊢ 𝑓 ◦ 𝑔 : Γ.

Example 8. Let Δ ⊢ 𝑓 : Γ. There is a substitution q(𝑓 , 𝜎) in the following configuration:

Δ, 𝑥 : 𝜎[𝑓] Γ, 𝑥 : 𝜎

Δ Γ

q(𝑓 ,𝜎)

p(Δ,𝜎[𝑓]) p(Γ,𝜎)

𝑓

Explicitly, q(𝑓 , 𝜎) is given by (𝑓 , 𝑥). The diagram commutes, meaning p(Γ, 𝜎) ◦ q(𝑓 , 𝜎) = 𝑓 ◦ p(Δ, 𝜎[𝑓]),
up to variable renaming.

Proposition 9. Assume Π ⊢ ℎ : Λ, Λ ⊢ 𝑔 : Δ, and Δ ⊢ 𝑓 : Γ. Furthermore, let Γ ⊢ 𝜎 type and Γ ⊢ 𝑡 : 𝜎; then
the following equations hold (up to variable renaming).

𝑓 ◦ idΔ = idΓ ◦ 𝑓 = 𝑓

(𝑓 ◦ 𝑔) ◦ ℎ = 𝑓 ◦ (𝑔 ◦ ℎ)
𝜎[idΓ] = 𝜎

𝜎[𝑓 ◦ 𝑔] = 𝜎[𝑓][𝑔]
𝑡[idΓ] = 𝑡

𝑡[𝑓 ◦ 𝑔] = 𝑡[𝑓][𝑔]
The first two equations suggest that contexts and substitutions form a category, while the remaining

equations suggest that substitution is functorial.

3 Category with families
Building upon Proposition 9, we can consider any small category with a terminal object as a category of
contexts and substitutions. The terminal object models the empty context.

Scholium 10. A small category with a terminal object contains the data of contexts and substitutions of
type theory.

To model the following two judgments. We need to specify a set of types Ty(Γ) for each context Γ
and set of terms Tm(Γ, 𝜎) for each type 𝜎 ∈ Ty(Γ).

Γ ⊢ 𝜎 type Γ ⊢ 𝑡 : 𝜎

Moreover, these families of sets vary with substitutions: given a substitution Δ ⊢ 𝑓 : Γ, we must have
𝜎[𝑓] ∈ Ty(Δ) and 𝑡[𝑓] ∈ Tm(Δ, 𝜎[𝑓]). This models the following judgments:

Δ ⊢ 𝜎[𝑓] type Δ ⊢ 𝑡[𝑓] : 𝜎[𝑓]
Hence if 𝒞 is a category of contexts and substitutions, the set of types and the set of terms form a

𝒞-indexed family. To formalize this idea, we define the category Fam.

2

Definition 11. The category Fam of families has, as objects, pairs (𝐵0 , 𝐵1), where 𝐵0 is a set and 𝐵1 is
an 𝐵0-indexed family of sets (𝐵1

𝑏)𝑏∈𝐵0 ; and, as morphisms, (𝐵0 , 𝐵1) → (𝐶0 , 𝐶1) pairs (𝑓 0 , 𝑓 1), where
𝑓 0 : 𝐵0 → 𝐶0 is a function and 𝑓 1 is an 𝐵0-indexed family of functions (𝑓 1

𝑏 : 𝐵1
𝑏 → 𝐶1

𝑓 0(𝑏))𝑏∈𝐵0 .

Scholium 12. Given a category 𝒞 of contexts and substitutions. The 𝒞-indexed family of types and
terms is specified by a contravariant functor 𝐹 : 𝒞op → Fam.

Notation 13. We write (Ty ,Tm) : 𝒞op → Fam to emphasize that for each context Γ, the components
of (Ty(Γ),Tm(Γ)) are respectively a set of types and an indexed-set of terms. We write 𝜎{ 𝑓 } and 𝑡{ 𝑓 }
rather than the more cumbersome notations Ty(𝑓)(𝜎) and Tm(𝑓)𝜎{ 𝑓 }(𝑡).

The last missing ingredient is context extension: given a context Γ and a type 𝜎 ∈ Ty(Γ) we need to
specify a context Γ.𝜎 to model the variable declaration Γ, 𝑥 : 𝜎. We need a substitution p(Γ, 𝜎) : Γ.𝜎 → Γ,
so we can extend the context Γ with 𝜎. Furthermore, we need a term 𝑣 ∈ Tm(Γ.𝜎, 𝜎{p(Γ, 𝜎)}) that plays
the role of a variable, so we can model the variable rule:

Γ, 𝑥 : 𝜎 ⊢ 𝑥 : 𝜎

Acandidate for context extension is simply a substitution 𝑓 : Δ → Γ equippedwith a term 𝑡 ∈ Tm(Δ, 𝜎{ 𝑓 }).

Definition 14. The category of comprehension candidates El(𝐹Γ,𝜎) has, as objects, pairs (𝑓 , 𝑠), where 𝑓 : Δ →
Γ is a substitution and 𝑠 ∈ Tm(Δ, 𝜎{ 𝑓 }); and, as morphisms, (𝑓 , 𝑠) → (𝑔, 𝑡) commuting triangles in the
following configuration:

Λ Δ

Γ

ℎ

𝑓
𝑔

such that 𝑡{ℎ} = 𝑠.

Among all candidates, we pick the universal one to model context extension.

Definition 15. Let 𝜎 ∈ Ty(Γ). A comprehension for 𝜎 is a choice of a terminal object in El(𝐹Γ,𝜎). Explicitly,
this consists of a substitution p(Γ, 𝜎) : Γ.𝜎 → Γ and a term 𝑣 ∈ Tm(Γ.𝜎, 𝜎{p(Γ, 𝜎)}) such that for any
substitution 𝑓 : Δ → Γ and any term 𝑡 ∈ Tm(Δ, 𝜎{ 𝑓 }), there is a unique substitution ⟨ 𝑓 , 𝑡⟩ : Δ → Γ.𝜎
with p(Γ, 𝜎) ◦ ⟨ 𝑓 , 𝑡⟩ = 𝑓 and 𝑣{⟨ 𝑓 , 𝑡⟩} = 𝑡.

Notation 16. We write p(𝜎) for p(Γ, 𝜎) when Γ is obvious.

The reader familiar with the notion of a category of elements will recognize that Definition 14 is the
category of elements of some contravariant functor.

Exercise 17. Find the contravariant functor 𝐹Γ,𝜎 and deduce that 𝜎 has a comprehension if and only if
𝐹Γ,𝜎 is representable.

Scholium 18. The terminal object in El(𝐹Γ,𝜎) models context extension.

We are now ready to define the notion of a category with families.

Definition 19. A category with families (CwF) is given by the following data:

• a category 𝒞 with a terminal object;

• a functor 𝐹 : 𝒞op → Fam;

• a comprehension for each Γ ∈ 𝒞 and 𝜎 ∈ Ty(Γ).
Terminology 20. We refer to the action on morphisms of 𝐹 as substitution as well.

3

3.1 Examples of categories with families
Example 21. The category of contexts and substitutions, identified up to definitional equality, has a CwF
structure in the following settings:

Ty(Γ) := {𝜎 | Γ ⊢ 𝜎 type}
Tm(Γ, 𝜎) := {𝑡 | Γ ⊢ 𝑡 : 𝜎}

Each substitution Δ ⊢ 𝑓 : Γ is mapped to the usual substitution function −[𝑓].
The comprehension for 𝜎 is given by the substitution Γ, 𝑥 : 𝜎 ⊢ (𝑥1 , . . . , 𝑥𝑛) : Γ, where Γ = 𝑥1 :

𝜎1 , . . . , 𝑥𝑛 : 𝜎𝑛 , and the variable Γ, 𝑥 : 𝜎 ⊢ 𝑥 : 𝜎.

Example 22. The category T := {ff ≤ tt} of truth values has a CwF structure with the following settings:

Ty(ff) := Ty(tt) = {ff, tt}

Tm(Γ, 𝜎) :=

{
1Set if Γ ≤ 𝜎,
0Set otherwise.

The comprehension for 𝜎 is given by Γ ∧ 𝜎 ≤ Γ and the variable is the trivial element.

Example 23. The category Set of sets and functions has a CwF structure. We can consider a context Γ as
a set of stages; then a type 𝜎 is a Γ-indexed set of terms and a term of type 𝜎 at stage 𝛾 is an element of
𝜎𝛾.

Ty(Γ) := {(𝜎𝛾)𝛾∈Γ , (𝜏𝛾)𝛾∈Γ , . . .}
Tm(Γ, 𝜎) :=

∏
𝛾∈Γ

𝜎𝛾

Here,
∏

𝛾∈Γ 𝜎𝛾 is the set-theoretic dependent function space; an element 𝑡 ∈ ∏
𝛾∈Γ 𝜎𝛾 is a function map-

ping each 𝛾 ∈ Γ to an element of 𝜎𝛾.
Substitution is given by precomposition: for each function 𝑓 : Δ → Γ, the type 𝜎{ 𝑓 } is given

component-wise by (𝜎{ 𝑓 })𝛿 := 𝜎 𝑓 (𝛿) and the term 𝑡{ 𝑓 } is given by 𝑡{ 𝑓 }(𝛿) = 𝑡(𝑓 (𝛿)).
The comprehension for 𝜎 is given by the first project {(𝛾, 𝑥) | 𝛾 ∈ Γ, 𝑥 ∈ 𝜎𝛾} → Γ and the variable

𝑣 ∈ ∏
(𝛾,𝑥)∈Γ.𝜎 𝜎 𝑓 (𝛾,𝑥) is defined by 𝑣(𝛾, 𝑥) = 𝑥.

In the set model, there is no non-trivial structure between any two stages because a context, in this
case, is just a set.

Certain applications require contexts to have additional structures; for example, to study how an
object type theory embeds into the Logical Framework, we may take a stage to be a context in the object
type theory. In this scenario, we have to accommodate a category of stages.

Example 24. Let 𝒯 be a small category of stages; the presheaf category Pr(𝒯) has a CwF structure that
generalizes the set-theoretic one in Example 23.

Given a context Γ : 𝒯 op → Set, a type 𝜎 is a “Γ-indexed” family. To make sense of this, we compress
Γ into its category of elements El(Γ); then a type 𝜎 is simply a presheaf of terms over El(Γ).

Ty(Γ) := {(𝜎𝛾)𝛾∈El(Γ) , (𝜏𝛾)𝛾∈El(Γ) , . . .}
Terms, substitution, and comprehensions are given analogously as in Example 23.

3.2 Terms, sections, and weakening
The discussion in Section 2 gives us the impression that every term determines a substitution and every
substitution of a particular kind corresponds to a term. We will expose this idea in greater detail in this
section.

Let 𝒞 be a CwF and 𝑡 ∈ Tm(Γ, 𝜎). Note that 𝑡 ∈ Tm(Γ, 𝜎{idΓ}) by functoriality. Then comprehension
yields a unique section 𝑡 := ⟨idΓ , 𝑡⟩ of the projection p(Γ, 𝜎) such that 𝑣{𝑡} = 𝑡.

Γ.𝜎

Γ Γ

p(Γ,𝜎)𝑡

4

Conversely, let 𝑓 : Γ → Γ.𝜎 be a section of p(Γ, 𝜎). This section corresponds to a term 𝑣{ 𝑓 } ∈ Tm(Γ, 𝜎).
Then comprehension yields a section 𝑣{ 𝑓 } : Γ → Γ.𝜎. By uniqueness, 𝑓 = 𝑣{ 𝑓 }; hence there is a bĳective
correspondence between terms and sections. In light of this correspondence, wemay freely regard every
term as a substitution.

Notation 25. We write 𝑡 to mean both the term 𝑡 and the substitution 𝑡.

Contexts, types, and terms can be weakened; substitutions are no exceptions. Given a substitution
𝑓 : Δ → Γ and a type 𝜎 ∈ Ty(Γ), there ought to be a substitution q(𝑓 , 𝜎) : Δ.𝜎{ 𝑓 } → Γ.𝜎 that leaves the
variable declaration 𝑥 : 𝜎 unchanged, while behaves like 𝑓 on the rest of the context. Since we want to
leave 𝑥 : 𝜎 unchanged, we take the variable 𝑣𝜎{ 𝑓 } ∈ Tm(Δ.𝜎{ 𝑓 }, 𝜎{ 𝑓 }) given by the comprehension for
𝜎{ 𝑓 }; then the only substitution that makes sense is ⟨ 𝑓 ◦ p(𝜎{ 𝑓 }), 𝑣𝜎{ 𝑓 }⟩ .
Notation 26. To keep the notations clean, we will not spell out substitutions along weakening substitu-
tions, such as p(𝜎) and q(𝑓 , 𝜎), explicitly.

3.3 Interpreting types
So far, we have only defined how to interpret contexts and substitutions, which is insufficient for any
interesting type theory, i.e., a type theory with types. In this section, we will define the interpretations
of types common found in Martin-Löf type theories.

3.3.1 The empty type

0-F

⊢ 0 type

0-E
Γ, 𝑥 : 0 ⊢ 𝜏 type

Γ, 𝑥 : 0 ⊢ ind0
𝜏(𝑥) : 𝜏

Definition 27. A CwF 𝒞 supports the empty type if the following data are given:

• formation: a type empty ∈ Ty(1𝒞);
• elimination: for each type 𝜏 ∈ Ty(Γ. empty), a term indempty

𝜏 ∈ Tm(Γ. empty, 𝜏).
The eliminator is required to be stable under substitution: for any 𝑓 : Δ → Γ, indempty

𝜏{ 𝑓 } = indempty
𝜏 { 𝑓 }.

Example 28. The term model supports the empty type with the following settings:

empty := 0

indempty
𝜏 := ind0

𝜏(𝑥)
where 𝑥 : 0 is a free variable.

Example 29. The truth value model supports the empty type with the following settings:

empty := ff
indempty

𝜏 := ∗
Remark 30. This is the only possible interpretation of 0 in the truth valuemodel since we need to ensure
that Tm(Γ. empty, 𝜏) is nonempty for any 𝜏.

Example 31. The set model supports the empty type with the following settings:

empty𝛾 := ∅
indempty

𝜏 := !

where ! is the unique function mapping out of the empty set.

5

3.3.2 The unit type

1-F

⊢ 1 type
1-I

⊢ ★ : 1

1-E
Γ, 𝑥 : 1 ⊢ 𝜏 type Γ ⊢ 𝑠 : 𝜏[★/𝑥]

Γ, 𝑥 : 1 ⊢ ind1(𝑥, 𝑠) : 𝜏

1-𝛽
Γ, 𝑥 : 1 ⊢ 𝜏 type Γ ⊢ 𝑠 : 𝜏[★/𝑥]

Γ ⊢ ind1(★, 𝑠) = 𝑠 : 𝜏[★/𝑥]
Definition 32. A CwF 𝒞 supports the unit type if the following data are given:

• formation: a type unit ∈ Ty(1𝒞);
• introduction: a term★ ∈ Tm(1𝒞 , unit);
• elimination: for each type 𝜏 ∈ Ty(Γ. unit), a function indunit

𝜏 : Tm(Γ, 𝜏{★}) → Tm(Γ. unit, 𝜏).
These data are subject to the following equations:

• 𝛽-law: indunit(𝑠){★} = 𝑠;

• stability under substitution: for any morphism 𝑓 : Δ → Γ, indunit
𝜏 (𝑠){ 𝑓 } = indunit

𝜏{ 𝑓 }(𝑠{ 𝑓 }).
Example 33. The term model supports the unit type with the following settings:

unit := 1

★ := ★

indunit
𝜏 (𝑠) := ind1(𝑥, 𝑠)

where 𝑥 : 1 is a free variable.

Example 34. The truth value model supports the unit type with the following settings:

unit := tt
★ := ∗

indunit
𝜏 (𝑠) := !

Remark 35. This is the only interpretation of the unit type in the truth value model since we need to
ensure that Tm(1T , unit) is nonempty.

Example 36. The set model supports the unit type with the following settings:

unit𝛾 := 1Set

★ := id1Set

indunit
𝜏 (𝑠)(𝛾, ∗) := ∗

where ∗ is the unique element of 1Set.

3.3.3 The natural number type

N-F

⊢ N type

N-I𝑧

⊢ 0 : N

N-Isuc
Γ ⊢ 𝑢 : N

Γ ⊢ suc(𝑢) : N

N-E
Γ, 𝑥 : N ⊢ 𝜏 type
Γ ⊢ 𝑠 : 𝜏[0/𝑥] Γ, 𝑦 : N, 𝑝 : 𝜏[𝑦/𝑥] ⊢ 𝑡 : 𝜏[suc(𝑦)/𝑥]

Γ, 𝑛 : N ⊢ indN(𝑛, 𝑠, 𝑡) : 𝜏[𝑛/𝑥]
N-𝛽1

Γ, 𝑥 : N ⊢ 𝜏 type Γ ⊢ 𝑠 : 𝜏[0/𝑥] Γ, 𝑦 : N, 𝑝 : 𝜏[𝑦/𝑥] ⊢ 𝑡 : 𝜏[suc(𝑦)/𝑥]
Γ ⊢ indN(0, 𝑠 , 𝑡) = 𝑠 : 𝜏[0/𝑥]

N-𝛽2

Γ, 𝑥 : N ⊢ 𝜏 type Γ ⊢ 𝑠 : 𝜏[0/𝑥] Γ, 𝑦 : N, 𝑝 : 𝜏[𝑦/𝑥] ⊢ 𝑡 : 𝜏[suc(𝑦)/𝑥]
Γ, 𝑛 : N ⊢ indN(suc(𝑛), 𝑠 , 𝑡) = 𝑡[𝑛/𝑦, indN(𝑛, 𝑠, 𝑡)/𝑝] : 𝜏[suc(𝑛)/𝑥]

6

Definition 37. A CwF 𝒞 supports the natural number type if the following data are given:

• formation: nat ∈ Ty(1𝒞);
• introduction: a term zero ∈ Tm(1𝒞 , nat) together with a function sucΓ : Tm(Γ, nat) → Tm(Γ, nat);
• elimination: for each 𝜏 ∈ Ty(Γ. nat), a function

indnat
𝜏 : Tm(Γ, 𝜏{zero}) × Tm(Γ. nat .𝜏, 𝜏{suc(𝑣nat)}) → Tm(Γ. nat, 𝜏{𝑣nat})

These data are required to be stable under substitution and the following equations must hold:

indnat
𝜏 (𝑠, 𝑡){zero} = 𝑠

indnat
𝜏 (𝑠, 𝑡){suc(𝑛)} = 𝑡{𝑛}{indnat(𝑠, 𝑡)}

Example 38. The truth value model supports the natural number type with the following settings:

nat := tt
zero := ∗
suc := id

indnat
𝜏 := !

3.3.4 Universes

𝒰-F

⊢ 𝒰 type

El-F
Γ ⊢ 𝑡 : 𝒰

Γ ⊢ El(𝑡) type

Definition 39. A universe is closed under 0 and 1 if we additionally have the following rules:

0-𝒰
⊢ 0̂ : 𝒰

1-𝒰
⊢ 1̂ : 𝒰

0-El

⊢ El(0̂) = 0 type

1-El

⊢ El(1̂) = 1 type

Definition 40. Let 𝒞 be a CwF supporting 0 and 1. 𝒞 supports a universe closed under 0 and 1 if the
following data are given:

• formation: 𝒰 ∈ Ty(1𝒞);
• decoding function: for each Γ, a function ElΓ : Tm(Γ,𝒰) → Ty(Γ).
• the empty type: ˆempty ∈ Tm(1𝒞 ,𝒰);
• the unit type: ˆunit ∈ Tm(1𝒞 ,𝒰).

These data are required to be stable under substitution and the following equations must hold:

El(ˆempty) = empty
El(ˆunit) = unit

Proposition 41. The truth value model does not support a universe closed under 0 and 1.

Proof. Suppose that it does, then we have ˆempty = ˆunit since Tm(1T ,𝒰) is a singleton set; hence empty =
unit. By Examples 29 and 34, this implies that ff = tt, which is not the case. □

The set model supports a universe closed under more than 0 and 1; for instance, we can take the
usual Grothendieck universe.

7

3.3.5 Dependent product types

Π-F
Γ, 𝑥 : 𝜎 ⊢ 𝜏 type
Γ ⊢ Π𝑥 : 𝜎.𝜏 type

Π-I
Γ, 𝑥 : 𝜎 ⊢ 𝑡 : 𝜏

Γ ⊢ 𝜆𝑥 : 𝜎.𝑡 : Π𝑥 : 𝜎.𝜏

Π-E
Γ ⊢ 𝑓 : Π𝑥 : 𝜎.𝜏

Γ, 𝑢 : 𝜎 ⊢ 𝑓 (𝑢) : 𝜏[𝑢/𝑥]
Π-𝛽

Γ, 𝑥 : 𝜎 ⊢ 𝑡 : 𝜏 Γ ⊢ 𝑠 : 𝜎
Γ ⊢ (𝜆𝑥 : 𝜎.𝑡)(𝑠) = 𝑡[𝑠/𝑥] : 𝜏[𝑠/𝑥]

Definition 42. A CwF 𝒞 supports Π-types if for any two types 𝜎 ∈ Ty𝒞(Γ) and 𝜏 ∈ Ty𝒞(Γ.𝜎), we have
the following data:

• formation: a type Pi(𝜎, 𝜏) ∈ Ty𝒞(Γ);
• introduction: for each term 𝑡 ∈ Tm𝒞(Γ.𝜎, 𝜏), there is a term lam𝜎,𝜏(𝑡) ∈ Tm𝒞(Γ,Pi(𝜎, 𝜏));
• elimination: a morphism in the following configuration:

Γ.𝜎.Pi(𝜎, 𝜏) Γ.𝜎.𝜏

Γ.𝜎

app𝜎,𝜏

p(Pi(𝜎,𝜏))
p(𝜏)

These data are subject to the following conditions:

• 𝛽-law: for every term 𝑡 ∈ Tm𝒞(Γ.𝜎, 𝜏), the following diagram commutes:

Γ.𝜎.Π(𝜎, 𝜏) Γ.𝜎.𝜏

Γ.𝜎

app𝜎,𝜏

lam𝜎,𝜏(𝑡)
𝑡

• stability under substitution: for every morphism 𝑓 : Δ → Γ, one has the following equations:

Pi(𝜎, 𝜏){ 𝑓 } = Pi(𝜎{ 𝑓 }, 𝜏)
lam𝜎,𝜏(𝑡){ 𝑓 } = lam𝜎{ 𝑓 },𝜏(𝑡)

and the following diagram commutes:

Δ.𝜎{ 𝑓 }.Pi(𝜎{ 𝑓 }, 𝜏{ 𝑓 }) Δ.𝜎{ 𝑓 }.𝜏{ 𝑓 }

Γ.𝜎.Pi(𝜎, 𝜏) Γ.𝜎.𝜏

app𝜎{ 𝑓 },𝜏{ 𝑓 }

q(q(𝑓 ,𝜎),Pi(𝜎,𝜏)) q(q(𝑓 ,𝜎),𝜏)

app𝜎,𝜏

Example 43. The term model of a type theory supports Π-types with the evident settings:

Pi(𝜎, 𝜏) := Π𝑥 : 𝜎.𝜏
lam𝜎,𝜏(𝑡) := 𝜆𝑥 : 𝜎.𝑡

and app𝜎,𝜏 is given by the substitution

Γ, 𝑦 : 𝜎, 𝑧 : Π𝑥 : 𝜎.𝜏 ⊢ (𝛾, 𝑧(𝑦)) : Γ, 𝑥 : 𝜎, 𝑤 : 𝜏

Example 44. The truth value model supports Π-types with the following settings:

Pi(𝜎, 𝜏) := 𝜎 → 𝜏

lam𝜎,𝜏(𝑡) := ∗
app𝜎,𝜏 := Γ ∧ 𝜎 ∧ Pi(𝜎, 𝜏) ≤ Γ ∧ 𝜎 ∧ 𝜏

8

Example 45. The set-theoretic model supports Π-types with the following settings:

Pi(𝜎, 𝜏)𝛾 :=
∏
𝑥∈𝜎𝛾

𝜏(𝛾,𝑥)

lam𝜎,𝜏(𝑡) := 𝜆𝛾 ∈ Γ.𝜆𝑥 ∈ 𝜎𝛾 .𝑡(𝛾, 𝑥)
app𝜎,𝜏(𝛾, 𝑥, 𝑓) := (𝛾, 𝑓 (𝑥))

3.3.6 Intensional identity types

Id-F
Γ ⊢ 𝑎 : 𝜎 Γ ⊢ 𝑏 : 𝜎
Γ ⊢ Id𝜎(𝑎, 𝑏) type

Id-I
Γ ⊢ 𝑎 : 𝜎

Γ ⊢ refl𝜎(𝑎) : Id𝜎(𝑎, 𝑎)

Id-E
Γ, 𝑥 : 𝜎, 𝑦 : 𝜎, 𝑝 : Id𝜎(𝑥, 𝑦) ⊢ 𝜏 type
Γ, 𝑧 : 𝜎 ⊢ 𝑠 : 𝜏[𝑧/𝑥, 𝑧/𝑦, refl𝜎(𝑧)/𝑝]

Γ, 𝑥 : 𝜎, 𝑦 : 𝜎, 𝑝 : Id𝜎(𝑥, 𝑦) ⊢ indId(𝑝, 𝑠) : 𝜏

Id-𝛽
Γ ⊢ 𝑎 : 𝜎 Γ, 𝑧 : 𝜎 ⊢ 𝑠 : 𝜏[𝑧/𝑥, 𝑧/𝑦, refl𝜎(𝑧)/𝑝]

Γ ⊢ indId(refl𝜎(𝑎), 𝑠) = 𝑠[𝑎/𝑧] : 𝜏[𝑎/𝑥, 𝑎/𝑦, refl𝜎(𝑎)/𝑝]
Definition 46. ACwF 𝒞 supports (intensional) identity types if for every 𝜎 ∈ Ty𝒞(Γ), the following data
are given:

• formation: a type Id𝜎 ∈ Ty𝒞(Γ.𝜎.𝜎);
• introduction: a morphism refl𝜎 : Γ.𝜎 → Γ.𝜎.𝜎. Id𝜎 in the following configuration:

Γ.𝜎 Γ.𝜎.𝜎. Id𝜎

Γ.𝜎.𝜎

refl𝜎

𝑣𝜎
p(Id𝜎)

• elimination: for each type 𝜏 ∈ Ty𝒞(Γ.𝜎.𝜎. Id𝜎), a function indId
𝜎,𝜏 : Tm𝒞(Γ.𝜎, 𝜏{refl𝜎}) → Tm𝒞(Γ.𝜎.𝜎. Id𝜎 , 𝜏).

These data are required to be stable under substitution and additionally the following equation holds
for every term 𝑡 ∈ Tm𝒞(Γ.𝜏, 𝜏{refl𝜎}):

indId
𝜎,𝜏(𝑡){refl𝜎} = 𝑡 𝛽-law

Example 47. The term model of intensional type theory supports identity types with the following
settings:

Id𝜎 := Γ, 𝑥 : 𝜎, 𝑦 : 𝜎 ⊢ Id𝜎(𝑥, 𝑦) type
refl𝜎 := Γ, 𝑥 : 𝜎 ⊢ (𝛾, 𝑥, 𝑥, refl𝜎(𝑥)) : Γ, 𝑥 : 𝜎, 𝑦 : 𝜎, 𝑝 : Id𝜎(𝑥, 𝑥)

indId
𝜎,𝜏(𝑡) := indId(𝑝, 𝑡)

where 𝑝 is a free variable.

Example 48. The truth value model supports identity types with the following settings:

Id𝜎 := tt
refl𝜎 := Γ ∧ 𝜎 ≤ Γ ∧ 𝜎 ∧ 𝜎 ∧ Id𝜎

indId
𝜎,𝜏 := !

Example 49. The set model supports identity types with the following settings:

(Id𝜎)(𝛾,𝑥,𝑦) :=

{
1Set if 𝑥 = 𝑦;
0Set otherwise

refl𝜎(𝛾, 𝑥) := (𝛾, 𝑥, 𝑥, ∗)
indId

𝜎,𝜏(𝑠)(𝛾, 𝑥, 𝑦, 𝑝) := 𝑠(𝛾, 𝑥)

9

3.3.7 Dependent sum types

Σ-F
Γ, 𝑥 : 𝜎 ⊢ 𝜏 type
Γ ⊢ Σ𝑥 : 𝜎.𝜏 type

Σ-I
Γ ⊢ 𝑎 : 𝜎 Γ ⊢ 𝑏 : 𝜏[𝑎/𝑥]

Γ ⊢ ⟨𝑎, 𝑏⟩ : Σ𝑥 : 𝜎.𝜏

Σ-E
Γ, 𝑧 : Σ𝑥 : 𝜎.𝜏 ⊢ 𝜌 type

Γ, 𝑥 : 𝜎, 𝑦 : 𝜏 ⊢ 𝑠 : 𝜌[⟨𝑥, 𝑦⟩/𝑧]
Γ, 𝑧 : Σ𝑥 : 𝜎.𝜏 ⊢ indΣ(𝑧, 𝑠) : 𝜌

Σ-𝛽
Γ ⊢ 𝑎 : 𝜎 Γ ⊢ 𝑏 : 𝜏[𝑎/𝑥] Γ, 𝑥 : 𝜎, 𝑦 : 𝜏 ⊢ 𝑠 : 𝜌[⟨𝑥, 𝑦⟩/𝑧]

indΣ(⟨𝑎, 𝑏⟩, 𝑠) = 𝑠[𝑎/𝑥, 𝑏/𝑦] : 𝜌[⟨𝑎, 𝑏⟩/𝑧]
Definition 50. A CwF 𝒞 supports Σ-types if the following data are given for any two types 𝜎 ∈ Ty𝒞(Γ)
and 𝜏 ∈ Ty𝒞(Γ.𝜎):

• formation: a type Sig(𝜎, 𝜏) ∈ Ty𝒞(Γ);
• introduction: a morphism in the following configuration:

Γ.𝜎.𝜏 Γ. Sig(𝜎, 𝜏)

Γ.𝜎 Γ

pair𝜎,𝜏

p(𝜏) p(Sig(𝜎,𝜏))

p(𝜎)

• elimination: for every type 𝜌 ∈ Ty𝒞(Γ. Sig(𝜎, 𝜏)) and term 𝑡 ∈ Tm𝒞(Γ.𝜎.𝜏, 𝜌{pair𝜎,𝜏}), a term
indSig

𝜎,𝜏,𝜌(𝑡) ∈ Tm𝒞(Γ. Sig(𝜎, 𝜏), 𝜌).
These data are subject to the following conditions:

• 𝛽-law: for every type 𝜌 ∈ Ty𝒞(Γ. Sig(𝜎, 𝜏)) and term 𝑡 ∈ Tm𝒞(Γ.𝜎.𝜏, 𝜌{pair𝜎,𝜏}), the equation
indSig

𝜎,𝜏,𝜌(𝑡){pair𝜎,𝜏} = 𝑡 holds;

• stability under substitution.

Example 51. The term model supports Σ-types with the following settings:

Sig(𝜎, 𝜏) := Σ𝑥 : 𝜎.𝜏
pair𝜎,𝜏 := Γ, 𝑥 : 𝜎, 𝑦 : 𝜏 ⊢ (𝛾, ⟨𝑢, 𝑠⟩) : Γ, 𝑧 : Σ𝑥 : 𝜎.𝜏

indSig
𝜎,𝜏,𝜌(𝑠) := indΣ(𝑥, 𝑠)

where 𝑥 : Σ𝑥 : 𝜎.𝜏 is a free variable.

Example 52. The truth value model supports Σ-types with the following settings:

Sig(𝜎, 𝜏) := 𝜎 ∧ 𝜏

pair𝜎,𝜏 := Γ ∧ 𝜎 ∧ 𝜏 ≤ Γ ∧ Sig(𝜎, 𝜏)
indSig

𝜎,𝜏,𝜌 := !

Example 53. The set model supports Σ-types with the following settings:

Sig(𝜎, 𝜏)𝛾∈Γ := {(𝑥, 𝑦) : 𝑥 ∈ 𝜎𝛾 , 𝑦 ∈ 𝜏(𝛾,𝑥)}
pair𝜎,𝜏(𝛾, 𝑥, 𝑦) := (𝛾, (𝑥, 𝑦))

indSig
𝜎,𝜏,𝜌(𝑠) := 𝜆(𝛾, (𝑥, 𝑦)) ∈ Γ. Sig(𝜎, 𝜏).𝑠(𝛾, 𝑥, 𝑦)

4 Peano’s 4th axiom
A famous example in an introduction to type theory course is to show that 0 is not 1, i.e., the type
Id(0, suc(0)) → 0 is inhabited. The proof (in Agda) usually goes as follows. First, we define the following
function that essentially characterizes equality on the natural numbers:

10

eq : nat -> nat -> Set
eq z z = unit
eq z (suc n) = empty
eq (suc m) z = empty
eq (suc m) (suc n) = eq m n

where Set is a universe closed under 0 and 1.
Then we show that eq is complete for IdN(𝑥, 𝑦), i.e., if IdN(𝑥, 𝑦), then eq x y is inhabited.

complete : (x y : nat) -> Id x y -> eq x y
complete z .z (refl .z) = *
complete (suc x) .(suc x) (refl .(suc x)) = complete x x (refl x)

And finally, we can now easily find a term of type Id(0, suc(0)) → 0.

pa4 : Id 0 (suc 0) -> empty
pa4 p = complete 0 (suc 0) p

Remark 54. Doing a pattern match on p is cheating.

In hindsight, it is not clear why we need to bother with the function eq. The following proposition
shows that it is necessary.

Proposition 55. The type Id(0, suc(0)) → 0 is not inhabited in a Martin-Löf type theory 𝒯 without universes.

Proof. If the type is inhabited, then Tm(1𝒞 , Idnat{zero, suc(zero)} → empty) is not empty for all CwF 𝒞
that supports 𝒯 .

Since𝒯 has nouniverses, it can be interpreted into the truth valuemodel; butTm(1T , Idnat{zero, suc(zero)} →
empty) is empty because the latter type is interpreted as the exponential tt → ff, i.e., ff. □

References
[Hof97] Martin Hofmann. Syntax and Semantics of Dependent Types, page 79–130. Publications of the

Newton Institute. Cambridge University Press, 1997.

11

	Introduction
	Substitutions
	Category with families
	Examples of categories with families
	Terms, sections, and weakening
	Interpreting types
	The empty type
	The unit type
	The natural number type
	Universes
	Dependent product types
	Intensional identity types
	Dependent sum types

	Peano's 4th axiom

