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1. There 1S A WAY TO be

In the previous lesson we studied localic topoi. A localic topos can be understood
as a generalized space and corresponds to the category of sheaves over the locale
of its subobjects of 1,

& = Sh(Subg(1)).

In this lesson we will concentrate on the foundational properties of a (localic)
topos. The general motto of today should be that a localic topos is a universe of
sets. In order to understand the meaning of this sentence, we should try to agree
of what a universe of sets should be. The first part of the lesson will be devoted to
understand some properties that characterize the category of sets.

The original program behind the paradigm of fopoi as sets was initiated by Law-
vere and has represented one of his four main quests in category theoryﬂ His aim
was to enucleate the so called elementary theory of the category of sets (ETCS).
This eventually lead to the definition of elementary topos, which is a relaxation of
the axioms of ETCS.

1.1. Set: a case study.

Remark 1. Without listing precisely the axioms of ZFC, it is not hard to recognize
the importance of some properties of the category of sets.

(1) Given two sets a, b, one can form the product a X b.

(2) Given two sets a, b one can form the set of functions Set(a, b).

(3) a = Set(1, a) for all sets.

(4) Given a set a one can form the powerset P(a), cointaining all the subsets
of a.

(5) There is an internal understaning of the poweset, in the sense that P(a) =
Set(a,2). Observe that this is an infernal understating because Set(a, 2) is
a set.

IThe other being characterizing categories of algebras, of categories, and of spaces.
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Remark 2. The fact that Set(a, b) is a set itself has a deep conceptual meaning. We
are labelling with a special type an object that has no reason, in principle, to belong
to Set. For example in the category of groups, the hom-sets ares not a groups. This
axiom is internalizing to the category of sets an object that would belong to some
meta-theoretic world. The same is true for products and powerset.

Remark 3. Two other properties that are quite relevant in set theory are:

(1) The terminal object 1 is a strong generator.
(2) There is an infinite set.

We are not sure that these properties have a conceptual meaning, The forst one
looks more related to make easier computations and arguments. The second one is
used to make our set theory more expressive.

1.1.1. Set is finitely complete and cartesian closed.

Remark 4. As a result of the previous discussion, we shall observe that (1), (2),
(3) are just instances of the fact that Set is a cartesian closed category with finite
limits. Recall that a category £ is cartesian closed when for every B, the functor
_Xb: E — & has aright adjiont bie.

E(ax b,c) = Ea,ch).

In particular we obtain that @ = a'! via Yoneda lemma:

ECaY=ECx1,a) = EC, a).
And this correspond to the fact that a set is the same of its internal points.

1.1.2. Set has a subobject classifier.
Remark 5. It is well known that there is a bijection
2 P@s2: TN,

where the map y is sending a subset m : b C a to the function y,, : a — 2 thatis
1 over the elements of b and 0 elsewhere. The inverse _~!(1) maps f to f~(1), as
suggested by the chosen notation. Observe that f~!(1) coincides with the pullback
of the following diagram.

1
e
2

Remark 6. Observe that if we think about 2 as the powerset of 1, the map ¢ is
pointing at the maximal subobject of 1 in its poset of subobjects.

@ —

Definition 7. Let £ be a category. A subobject classifier is an object Q together
with a monomorphism ¢ : 1 — Q such that such that every subobject m : b — a
in £ is the pullback of this morphism along a unique morphisnﬁ I - a— Q.

b—— 1
!
aﬁmﬁ

2The characteristic morphism of m.
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Remark 8. £ has a subobject classifier if and only if the functor Sub : £° — Set
is representable and in that case we have

Sub = £(_, Q),

as in the case of Set. To be more precise, Sub : £° — Set is the functor that assigns
to an object a its class of subobjects. For the action of Sub on maps, let f : a = b
be a morphism and m : ¢ — b be a subobject. Then Sub(f)(m) is defined via the
following pullback.

p——>¢
Sub(f)(m) "

a f — b

Remark 9. Observe that the last rephrasing of having a subobject classifier corre-
sponds to an exactness property of Set. Informmally, an exactness property of a
category is a compatibility law between limits and colimits. The infinitary distribu-
tivity law in a locale is an exactness condition of the underlying poset. The fact
that the functor Sub is representable implies that is maps colimits into limits. In a
concrete case, this means that if @ = colima; and b — a is a subobject of a, then b
is the colimit of the pullbacks a; N a.

colimbna; —— b

Lol

colima, — a

This is a compatibility between colimits and pullback along monomorphisms.
Keep in mind that in the case of locales, this exactness condition is precisely where
the geometry is hidden in the abstract algebra of the definition.

1.1.3. Elementary topoi. With the previous section in mind we are ready to give
the precise definition of a category of sets.

Definition 10. An elementary topos £ is a finitely complete and cartesian closed
category with a subobject classifier.

Of course, this does not mean that any elementary topos is equivalent to the
category of sets, it just means that we provided enough structure to play with the
basic construction of sets.

1.2. Two natural examples. Let us present two natural examples of ementary
topos.

Exercise 1 (The topos of finite sets). It is essentially trivial to observe that the cate-
gory of finite sets is an elementary topos, indeed the whole structure of Set restricts
to it. Notice that this topos is not cocomplete, and lacks some important infinitary
aspects. This exemplifies that the theory of elementary topoi only recovers the most
finitary fragments of the foundations of mathematics.

Exercise 2 (Presheaf topoi). Let C be a category, we shall convince the reader that
Set®” is an elementary topos. Of course it has finite limits, so we shall only discuss
cartesian closedness and the existence of a subobject classifer.
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o We shall start by cartesian closedness. Let P be a presheaf. The functor
O X — clearly cocontinuous, because colimits (and limits) are pointwise,
and Set is cartesian closed. It follows from the adjoint functor theorem that
a presheaf category is cartesian closed.

» The subobject functor is again continuous for the reasons above.

1.3. Localic topoi are elementary. The rest of the class will be devoted to prove
that a localic topos is elementary. We will need a technical result that already ap-
peared in the previous lesson. One maight think that our aim is to prove that a
localic topos is as good as Set to run mathematics, instead our aim is to convince
the reader that there is some internal logic going on in a localic topos. Be careful,
because there is something deep in this somewhat technical statement.

Theorem 1.1. The category Sh(©) is reflective in Set”” and the reflector Lo pre-
serves finite limitd]

Remark 11. Again, quite informally, one can transport along the reflector any ex-
actness condition of the presheaf category that involves finite limits and arbitrary
colimits (because this is the structure preserved by such a reflector). This is ex-
actly what happens in the case of locales, where the infinitary distributivity law is
conceptually inherited from the fact that it inhabits a totally distributive boolean
algebra, namely a powerset. Does it mean that the geometry of the localic topos is
encoded in the fact that the reflection is left exact? Yes, it does.

1.3.1. Sh(O) is finitely complete.
Lemma 1.2. Sh(0O) is finitely complete.

Proof. This is the easiest thing to prove. Sh(®) sits inside Set®" and is closed under
limits in this presheasf category. In fact this proves that Sh(©) is complete. U

1.3.2. Sh(O) is cartesian closed.

Remark 12. Let P, Q be two sheaves, we need to define P2. Since we have no
clue about the possible definition, it might be a good idea to start from a strong
generator. For every o € (9, we want to give a definition such that

Sh(O)(y(0) X O, P) = Sh(O)(y(0), P),
But recall that, whatever P2 is defined to be, the Yoneda lemma impies that
Sh(O)(y(0), P9) = P2(0).
Thus we can use the last one as a definition and hope for the best,
P2() = Sh(O)(¥) x Q, P).

Now, we should show that P2 is a sheaf with this definition and that this sheaf
has the desired property. Instead of following this path we will provide a formal
argument for which the category is cartesian closed, by uniqueness of the right
adjoint the functor that we will prove to exist has to match with the one that we just
defined.

Lemma 1.3. Sh(O) is is cartesian closed.

3Some people say the reflector is left exact.
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Proof. This proof should remind you about how we prove that a frame is an Heyting
algebra. We will show that the functor _ X a : Sh(®) — Sh(O) preserve colimits,
and thus is a left adjoint via the AFT. In order to accomplish this task, let’s give
some names. Recall that Sh(©) is reflective in Set?”,

Lo : Set” 5 Sh(O) : jo.

Now, the functor _ X jo(a) : Set? — Set?” preserve all colimits, because Set?
inherits cartesian closedness from Set. Let D be a diagram in Sh(©)

(colimD) X a = (LpcolimjoD) X a
Lo preserves finite limits = Lg((colimjyD) X joa)
Set? is cartesian closed = Lo(colim(joD X joa))
Lo preserves colimits = colim(LpjoD X a)
= colim(D X a).

Observe that it was enough to use that L preserve finite products in the proof.
d

1.3.3. Sh(O) has a subobject classifier. The strategy is always the same, first we
prove that Set? has a subobject classifier, then we show that having a subobject
classifier is stable under left exact reflections.

Remark 13. We discussed in advance that a category £ has a subobject classifier
when the functor Sub : £° — Set is representable, i.e.

Sub(L) = £(_, Q).
We should try to see if this observation helps us to guess the definition of this
functor. With the Yoneda lemma in mind, we evaluate the previous expression on
a representable,

Sub(y(0)) = £(y(0),L2) = Q(0).
And we obtained the only possible definition of the functor Q. Now we should
prove that it has the desired universal property.

Remark 14. We should also specify a universal true map ¢ : 1 — Q. This is the
map picking, for each o the maximal subobject in Sub(y(0)). Observe that is was
precisely what we where doing in the case of Set, as pointed out in Rem 6]

Remark 15. Recall that Set itself is the localic topos over the terminal topological
space. In this case the functor  is identified with its image (because a functor
1 — Set is an object of Set) and coincides with Sub(1) = P(1) = 2, as expected.

Remark 16. Before proving that the omega that we just defined is a subobject
classifier, observe that we can give a better description of some of its elements, in
fact:

{p€ O :p<q}=Suby(o) C Subgye)(¥(0))
Lemma 1.4. Sh(O) has a subobject classifier.

Proof. Letm : Q — P be a monomorphism in Sh(©) , we need to prove that there
exists a unique natural transformation y™ that forms a pullback like this one:
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0 ——1

|
P—3Q

For every object o of O and every element x € P(0), we know that this " has
to be a natural transformation such that y"(x) is a certain subfunctor of y(0),

Q) —— 1

L

P(O)W {p:p=<o}

As a result of this discussion, for every x € P(0), x.'(x) should be a family of
opens smaller that o that checks if x is of the form m(y) for some y in Q(0). Now
define,

xM(x) =sup{g <o : P(g) C Q(0)}.

No doubts that this is a subobject of y(0), in fact it is a very special selection of

maps into 0. One can check that this choice works. U

1.4. Towards Grothendieck topoi.

Remark 17. When we study topological spaces we know that from an algebraic
point of view, the geometry of the object is hidden in an exactness condition of the
poset of open sets, namely the infinitary distributivity law. The geometry of the
maps stays encoded in the preservation of intersections and joins.

Remark 18. Even if we did not prove it, one can believe that this compatibility of
finite intersection with arbitrary union propagates to the category of sheaves over
a locale. This coincides precisely with the fact that the reflector Ly : Set? —
Sh(O) preserves finite limits. Thus the geometry of a localic topos is completely
encoded in this compatibility of finite limits and arbirary colimits. One can say the
same for geometric morphism, where the geometric behaviour is was encoded in

the preservation of finite-intersections-and-arbitraryjoins finite limits and arbitrary

colimits.

Definition 19. A geothendieck topos G a a left exact localization of a presheaf
category. A morphism of Grothenddieck topoi f : £ — Gisafunctor f* : G — &
preserving colimits and finite limits.

Theorem 1.5. A Grothendieck topos is an elementary topos.
Proof. Omitted, but highly hinted in the previous proofs. O

Remark 20. As a final remark observe that a a presheaf category is an elemen-
tary topos essentially because Set is so, instead a Grothendieck topos is elementary
because its geometric axioms (the reflector being left exact) impose enough compat-
ibility between limits and colimits to preserve the elementary logic of the presheaf
category. This means that the defining axioms of Set that we care about are in-
herently geometric. If we require more internal logic of the category of sets to be
preserved, the reflector will make some obstructions, or equivalently, the geometry
will not care.


https://www.youtube.com/watch?v=UxxajLWwzqY
https://www.youtube.com/watch?v=UxxajLWwzqY
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